3

← 2 3 4 →
−1 0 1 2 3 4 5 6 7 8 9
Cardinalthree
Ordinal3rd
(third)
Numeral systemternary
Factorizationprime
Prime2nd
Divisors1, 3
Greek numeralΓ´
Roman numeralIII, iii
Latin prefixtre-/ter-
Binary112
Ternary103
Senary36
Octal38
Duodecimal312
Hexadecimal316
Arabic, Kurdish, Persian, Sindhi, Urdu٣
Bengali, Assamese
Chinese三,弎,叄
Devanāgarī
Ge'ez
Greekγ (or Γ)
Hebrewג
Japanese三/参
Khmer
ArmenianԳ
Malayalam
Tamil
Telugu
Kannada
Thai
N'Ko߃
Lao
GeorgianႢ/ⴂ/გ (Gani)
Babylonian numeral𒐗
Maya numerals•••
Morse code... _ _

3 (three) is a number, numeral and digit. It is the natural number following 2 and preceding 4, and is the smallest odd prime number and the only prime preceding a square number. It has religious and cultural significance in many societies.[1]

Evolution of the Arabic digit

The use of three lines to denote the number 3 occurred in many writing systems, including some (like Roman and Chinese numerals) that are still in use. That was also the original representation of 3 in the Brahmic (Indian) numerical notation, its earliest forms aligned vertically.[2] However, during the Gupta Empire the sign was modified by the addition of a curve on each line. The Nāgarī script rotated the lines clockwise, so they appeared horizontally, and ended each line with a short downward stroke on the right. In cursive script, the three strokes were eventually connected to form a glyph resembling a ⟨3⟩ with an additional stroke at the bottom: .

The Indian digits spread to the Caliphate in the 9th century. The bottom stroke was dropped around the 10th century in the western parts of the Caliphate, such as the Maghreb and Al-Andalus, when a distinct variant ("Western Arabic") of the digit symbols developed, including modern Western 3. In contrast, the Eastern Arabs retained and enlarged that stroke, rotating the digit once more to yield the modern ("Eastern") Arabic digit "٣".[3]

In most modern Western typefaces, the digit 3, like the other decimal digits, has the height of a capital letter, and sits on the baseline. In typefaces with text figures, on the other hand, the glyph usually has the height of a lowercase letter "x" and a descender: "". In some French text-figure typefaces, though, it has an ascender instead of a descender.

A common graphic variant of the digit three has a flat top, similar to the letter Ʒ (ezh). This form is sometimes used to prevent falsifying a 3 as an 8. It is found on UPC-A barcodes and standard 52-card decks.

Mathematics

According to Pythagoras and the Pythagorean school, the number 3, which they called triad, is the only number to equal the sum of all the terms below it, and the only number whose sum with those below equals the product of them and itself.[4]

Divisibility rule

A natural number is divisible by three if the sum of its digits in base 10 is divisible by 3. For example, the number 21 is divisible by three (3 times 7) and the sum of its digits is 2 + 1 = 3. Because of this, the reverse of any number that is divisible by three (or indeed, any permutation of its digits) is also divisible by three. For instance, 1368 and its reverse 8631 are both divisible by three (and so are 1386, 3168, 3186, 3618, etc.). See also Divisibility rule. This works in base 10 and in any positional numeral system whose base divided by three leaves a remainder of one (bases 4, 7, 10, etc.).

Properties of the number

3 is the second smallest prime number and the first odd prime number. It is the first unique prime, such that the period length value of 1 of the decimal expansion of its reciprocal, 0.333..., is unique. 3 is a twin prime with 5, and a cousin prime with 7, and the only known number such that ! − 1 and ! + 1 are prime, as well as the only prime number such that − 1 yields another prime number, 2. A triangle is made of three sides. It is the smallest non-self-intersecting polygon and the only polygon not to have proper diagonals. When doing quick estimates, 3 is a rough approximation of π, 3.1415..., and a very rough approximation of e, 2.71828...

3 is the first Mersenne prime, as well as the second Mersenne prime exponent and the second double Mersenne prime exponent, for 7 and 127, respectively. 3 is also the first of five known Fermat primes, which include 5, 17, 257, and 65537. It is the second Fibonacci prime (and the second Lucas prime), the second Sophie Germain prime, the third Harshad number in base 10, and the second factorial prime, as it is equal to 2! + 1.

3 is the second and only prime triangular number,[5] and Gauss proved that every integer is the sum of at most 3 triangular numbers.

Three is the only prime which is one less than a perfect square. Any other number which is − 1 for some integer is not prime, since it is ( − 1)( + 1). This is true for 3 as well (with = 2), but in this case the smaller factor is 1. If is greater than 2, both − 1 and + 1 are greater than 1 so their product is not prime.

The trisection of the angle was one of the three famous problems of antiquity.

3 is the number of non-collinear points needed to determine a plane, a circle, and a parabola.

There are only three distinct 4×4 panmagic squares.

Three of the five Platonic solids have triangular faces – the tetrahedron, the octahedron, and the icosahedron. Also, three of the five Platonic solids have vertices where three faces meet – the tetrahedron, the hexahedron (cube), and the dodecahedron. Furthermore, only three different types of polygons comprise the faces of the five Platonic solids – the triangle, the square, and the pentagon.

There are three finite convex uniform polytope groups in three dimensions, aside from the infinite families of prisms and antiprisms: the tetrahedral group, the octahedral group, and the icosahedral group. In dimensions ⩾ 5, there are only three regular polytopes: the -simplexes, -cubes, and -orthoplexes. In dimensions 9, the only three uniform polytope families, aside from the numerous infinite proprismatic families, are the simplex, cubic, and demihypercubic families. For paracompact hyperbolic honeycombs, there are three groups in dimensions 6 and 9, or equivalently of ranks 7 and 10, with no other forms in higher dimensions. Of the final three groups, the largest and most important is , that is associated with an important Kac–Moody Lie algebra .[6]

Numeral systems

There is some evidence to suggest that early man may have used counting systems which consisted of "One, Two, Three" and thereafter "Many" to describe counting limits. Early peoples had a word to describe the quantities of one, two, and three but any quantity beyond was simply denoted as "Many". This is most likely based on the prevalence of this phenomenon among people in such disparate regions as the deep Amazon and Borneo jungles, where western civilization's explorers have historical records of their first encounters with these indigenous people.[7]

List of basic calculations

Multiplication 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 50 100 1000 10000
3 × x 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 150 300 3000 30000
Division 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3 ÷ x 3 1.5 1 0.75 0.6 0.5 0.428571 0.375 0.3 0.3 0.27 0.25 0.230769 0.2142857 0.2 0.1875 0.17647058823529411 0.16 0.157894736842105263 0.15
x ÷ 3 0.3 0.6 1 1.3 1.6 2 2.3 2.6 3 3.3 3.6 4 4.3 4.6 5 5.3 5.6 6 6.3 6.6
Exponentiation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
3x 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163 387420489 1162261467 3486784401
x3 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000

Science

Engineering

  • The triangle, a polygon with three edges and three vertices, is the most stable physical shape. For this reason it is widely utilized in construction, engineering and design.[13]

Protoscience

Pseudoscience

Philosophy

Religion

Symbol of the Triple Goddess showing the waxing, full and waning Moon

Many world religions contain triple deities or concepts of trinity, including the Hindu Trimurti and Tridevi, the Triglav (lit. "Three-headed one"), the chief god of the Slavs, the three Jewels of Buddhism, the three Pure Ones of Taoism, the Christian Holy Trinity, and the Triple Goddess of Wicca.

The Shield of the Trinity is a diagram of the Christian doctrine of the Trinity.

Christianity

Judaism

Islam

  • The three core principles in Shia tradition: Tawhid (Oneness of God), Nabuwwa (Concept of Prophethood), Imama (Concept of Imam)

Buddhism

  • The Triple Bodhi (ways to understand the end of birth) are Budhu, Pasebudhu, and Mahaarahath.
  • The Three Jewels, the three things that Buddhists take refuge in.

Shinto

Daoism

Hinduism

Zoroastrianism

  • The three virtues of Humata, Hukhta and Huvarshta (Good Thoughts, Good Words and Good Deeds) are a basic tenet in Zoroastrianism.

Norse mythology

Three is a very significant number in Norse mythology, along with its powers 9 and 27.

  • Prior to Ragnarök, there will be three hard winters without an intervening summer, the Fimbulwinter.
  • Odin endured three hardships upon the World Tree in his quest for the runes: he hanged himself, wounded himself with a spear, and suffered from hunger and thirst.
  • Bor had three sons, Odin, Vili, and .

Other religions

Esoteric tradition

As a lucky or unlucky number

Three (, formal writing: , pinyin sān, Cantonese: saam1) is considered a good number in Chinese culture because it sounds like the word "alive" ( pinyin shēng, Cantonese: saang1), compared to four (, pinyin: , Cantonese: sei1), which sounds like the word "death" ( pinyin , Cantonese: sei2).

Counting to three is common in situations where a group of people wish to perform an action in synchrony: Now, on the count of three, everybody pull! Assuming the counter is proceeding at a uniform rate, the first two counts are necessary to establish the rate, and the count of "three" is predicted based on the timing of the "one" and "two" before it. Three is likely used instead of some other number because it requires the minimal amount counts while setting a rate.

There is another superstition that it is unlucky to take a third light, that is, to be the third person to light a cigarette from the same match or lighter. This superstition is sometimes asserted to have originated among soldiers in the trenches of the First World War when a sniper might see the first light, take aim on the second and fire on the third.[citation needed]

The phrase "Third time's the charm" refers to the superstition that after two failures in any endeavor, a third attempt is more likely to succeed.[29] This is also sometimes seen in reverse, as in "third man [to do something, presumably forbidden] gets caught". [citation needed]

Luck, especially bad luck, is often said to "come in threes".[30]

See also

References

  1. ^ "Merriam-Webster Dictionary". Merriam-webster.com. Retrieved December 5, 2024.
  2. ^ Smith, David Eugene; Karpinski, Louis Charles (1911). The Hindu-Arabic numerals. Boston; London: Ginn and Company. pp. 27–29, 40–41.
  3. ^ Georges Ifrah, The Universal History of Numbers: From Prehistory to the Invention of the Computer transl. David Bellos et al. London: The Harvill Press (1998): 393, Fig. 24.63
  4. ^ Priya Hemenway (2005), Divine Proportion: Phi In Art, Nature, and Science, Sterling Publishing Company Inc., pp. 53–54, ISBN 1-4027-3522-7
  5. ^ "A000217 - OEIS". oeis.org. Retrieved 2024-11-28.
  6. ^ Allcock, Daniel (May 2018). "Prenilpotent Pairs in the E10 root lattice" (PDF). Mathematical Proceedings of the Cambridge Philosophical Society. 164 (3): 473–483. Bibcode:2018MPCPS.164..473A. doi:10.1017/S0305004117000287. S2CID 8547735. Archived (PDF) from the original on 2022-11-03. Retrieved 2022-11-03.
    "The details of the previous section were E10-specific, but the same philosophy looks likely to apply to the other symmetrizable hyperbolic root systems...it seems valuable to give an outline of how the calculations would go", regarding E10 as a model example of symmetrizability of other root hyperbolic En systems.
  7. ^ Gribbin, Mary; Gribbin, John R.; Edney, Ralph; Halliday, Nicholas (2003). Big numbers. Cambridge: Wizard. ISBN 1840464313.
  8. ^ Zwiebach, Barton (2009). A first course in string theory (2nd ed.). Cambridge ; New York: Cambridge University Press. ISBN 978-0-521-88032-9.
  9. ^ Harari, H. (1977). "Three generations of quarks and leptons" (PDF). In van Goeler, E.; Weinstein, R. (eds.). Proceedings of the XII Rencontre de Moriond. p. 170. SLAC-PUB-1974.
  10. ^ Adair, R.K. (1989). The Great Design: Particles, Fields, and Creation. Oxford University Press. p. 214. Bibcode:1988gdpf.book.....A.
  11. ^ "The Rods and Cones of the Human Eye". hyperphysics.phy-astr.gsu.edu. Retrieved 2024-06-04.
  12. ^ Barrow-Green, June (2008). "The Three-Body Problem". In Gowers, Timothy; Barrow-Green, June; Leader, Imre (eds.). The Princeton Companion to Mathematics. Princeton University Press. pp. 726–728.
  13. ^ "Most stable shape- triangle". Maths in the city. Retrieved February 23, 2015.
  14. ^ Eric John Holmyard. Alchemy. 1995. p.153
  15. ^ Walter J. Friedlander. The golden wand of medicine: a history of the caduceus symbol in medicine. 1992. p.76-77
  16. ^ Kreidler, Marc (2017-12-14). "Ayurveda: Ancient Superstition, Not Ancient Wisdom". Skeptical Inquirer. Retrieved 2024-06-04.
  17. ^ Churchward, James (1931). "The Lost Continent of Mu – Symbols, Vignettes, Tableaux and Diagrams". Biblioteca Pleyades. Archived from the original on 2015-07-18. Retrieved 2016-03-15.
  18. ^ Windle, Bryan (2022-12-22). "Who Were the Magi?". Bible Archaeology Report. Retrieved 2024-07-05.
  19. ^ "Encyclopaedia Britannica". Lexikon des Gesamten Buchwesens Online (in German). doi:10.1163/9789004337862_lgbo_com_050367.
  20. ^ "The Encyclopaedia Britannica". Nature. XV (378): 269–271. 25 January 1877. Archived from the original on 24 July 2020. Retrieved 12 July 2019.
  21. ^ Marcus, Rabbi Yossi (2015). "Why are many things in Judaism done three times?". Ask Moses. Archived from the original on 2 April 2015. Retrieved 16 March 2015.
  22. ^ "Shabbat". Judaism 101. 2011. Archived from the original on 29 June 2009. Retrieved 16 March 2015.
  23. ^ Kitov, Eliyahu (2015). "The Three Matzot". Chabad.org. Archived from the original on 24 March 2015. Retrieved 16 March 2015.
  24. ^ Kaplan, Rabbi Aryeh (28 August 2004). "Judaism and Martyrdom". Aish.com. Archived from the original on 20 March 2015. Retrieved 16 March 2015.
  25. ^ "The Basics of the Upsherin: A Boy's First Haircut". Chabad.org. 2015. Archived from the original on 22 March 2015. Retrieved 16 March 2015.
  26. ^ "The Conversion Process". Center for Conversion to Judaism. Archived from the original on 23 February 2021. Retrieved 16 March 2015.
  27. ^ Kaplan, Aryeh. "The Soul Archived 2015-02-24 at the Wayback Machine". Aish. From The Handbook of Jewish Thought (Vol. 2, Maznaim Publishing. Reprinted with permission.) September 4, 2004. Retrieved February 24, 2015.
  28. ^ James G. Lochtefeld, Guna, in The Illustrated Encyclopedia of Hinduism: A-M, Vol. 1, Rosen Publishing, ISBN 978-0-8239-3179-8, page 265
  29. ^ "Definition of THE THIRD TIME IS THE CHARM". www.merriam-webster.com. Retrieved 2024-12-08.
  30. ^ See "bad Archived 2009-03-02 at the Wayback Machine" in the Oxford Dictionary of Phrase and Fable, 2006, via Encyclopedia.com.

Read other articles:

Wessel Nijman Plaats uw zelfgemaakte foto hier Persoonlijke informatie Geboortedatum 26 juni 2000 Geboorteplaats Uitgeest,  Nederland Woonplaats Uitgeest,  Nederland Sport Darts Dartsinformatie Pijlen Mission Darts Lateraliteit Rechtshandig Opkomstnummer Let Me Entertain You - Robbie Williams [1] Organisatie BDO Vanaf ± 2014 - 2020 PDC 2016 - 2020, 2023 - heden WDF Vanaf ± 2014 - 2020 BDO-hoofdtoernooien – Beste prestaties World Masters Laatste 272: 2018 WDF-hoofdtoernoo...

 

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) لي بيرن معلومات شخصية الميلاد 1 يونيو 1980 (43 سنة)  بريدجند  [لغات أخرى]‏  مواطنة المملكة المتحدة  الطول 191 سنتيمتر  الوزن 96 كيلوغرام  الحياة ...

 

 

Invasiones mongolas de Đại Việt y Champa Parte de las invasiones mongolas Campañas militares de la dinastía Yuan contra Birmania, Champa y Đại Việt en la ruta de Marco Polo. Dibujado por el arqueólogo alemán Albert Herrmann.Fecha 1258, 1282–1284, 1285 y 1287–88Lugar Đại Việt y ChampaResultado Véase ConsecuenciasBeligerantes Imperio mongol (1258) Dinastía Yuan (1283–85 y 1287–88) Đại Việt bajo la dinastía TrầnChampaExiliados y desertores chinos Comandantes ...

在トンガ中国大使館中国驻汤加大使馆ʻOfisi ʻo e ʻAmipasitoa ʻo Siaina ki TongaEmbassy of China in Tonga所在地 トンガ住所Vuna Road, Nuku'alofa開設1998年11月23日大使曹小林(中国語版)ウェブサイトto.chineseembassy.org/chn/ (中国語) 在トンガ中国大使館[1](中国語: 中国驻汤加大使馆、トンガ語: ʻOfisi ʻo e ʻAmipasitoa ʻo Siaina ki Tonga、英語: Embassy of China in Tonga)は、トンガの首都

 

 

El texto que sigue es una traducción defectuosa. Si quieres colaborar con Wikipedia, busca el artículo original y mejora esta traducción.Copia y pega el siguiente código en la página de discusión del autor de este artículo: {{subst:Aviso mal traducido|SpaceShipTwo}} ~~~~ SpaceShipTwo (fuselaje central) llevando bajo su nave nodriza White Knight Two. El Scaled Composites SpaceShipTwo Modelo 339 (SS2) es una nave espacial suborbital destinada al turismo espacial. Está bajo desarrollo de...

 

 

الزيل (محلة) تقسيم إداري البلد  اليمن المحافظة محافظة إب المديرية مديرية السياني العزلة عزلة النقيلين القرية قرية ذي المحاسن السكان التعداد السكاني 2004 السكان 555   • الذكور 258   • الإناث 297   • عدد الأسر 68   • عدد المساكن 61 معلومات أخرى التوقيت توقيت اليمن (+3 غريني...

American comedian Kate ClintonBorn (1947-11-09) November 9, 1947 (age 76)Buffalo, New York, U.S.EducationLe Moyne College (BA)Colgate University (MA)PartnerUrvashi Vaid (1988–2022)WebsiteOfficial website Kate Clinton (born November 9, 1947)[1] is an American comedian specializing in political commentary from a gay/lesbian point of view. Early life and education Clinton was born in Buffalo, New York.[2] She was raised in a large Catholic family in the state of New York. ...

 

 

Asam palmitat[1] Nama Nama IUPAC Asam heksadekanoat Nama lain C16:0 (Nomor lipid), Asam palmitat Penanda Nomor CAS 57-10-3 Y Model 3D (JSmol) Gambar interaktif 3DMet {{{3DMet}}} ChEMBL ChEMBL82293 N Nomor EC IUPHAR/BPS 1055 PubChem CID 985 Nomor RTECS {{{value}}} CompTox Dashboard (EPA) DTXSID2021602 SMILES CCCCCCCCCCCCCCCC(=O)O Sifat Rumus kimia C16H32O2 Massa molar 256.42 g/mol Penampilan Kristal putih Densitas 0.853 g/cm3 at 62 °C Titik lebur 62.9...

 

 

Pour les articles homonymes, voir Giner de los Ríos. Francisco Giner de los RíosFrancisco Giner de los Ríos en 1881FonctionsProfesseurProfesseur (en)BiographieNaissance 10 octobre 1839RondaDécès 17 février 1915 ou 18 février 1915MadridSépulture Cimetière civil de MadridNationalité espagnoleFormation Université de BarceloneFaculté de philosophie et de lettres (Université de Grenade) (d)Activités Écrivain, professeur d'université, philosophe, juristeFratrie Hermenegildo Giner de...

Yossi Brodny יוסי ברודני‎Brodny in 2022Mayor of Giv'at ShmuelIncumbentAssumed office 2008 Personal detailsBorn (1971-01-15) 15 January 1971 (age 52)Hadera, IsraelPolitical partyThe Jewish HomeLikud (formerly)Military serviceAllegianceIsraelBranch/serviceParatroopers BrigadeUnitBattalion 202 Yosef (Yossi) Brodny (Hebrew: יוסי ברודני; born 15 January 1971) is an Israeli politician who is the head of the electoral slate for The Jewish Home for the 2022 Israeli ...

 

 

Social club for high society Filipinos Club FilipinoLogoClubhouseEstablished1898; 125 years ago (1898)TypeSocial clubLocationGreenhills, San Juan, Metro Manila, PhilippinesFormerly calledClub Filipino IndependienteClub Internationale Club Filipino (pronounced klub) was the first exclusive social club in the Philippines, founded on November 6, 1898 by Filipino high society, including Spanish mestizos and members of the native aristocracy.[1] It is located between Nort...

 

 

FranklinNome oficial FranklinNome local FranklinGeografiaPaís  Estados UnidosEstado Carolina do NorteAltitude 410Coordenadas 36° 30′ 25″ N, 80° 51′ 56″ OLocalização da Carolina do Norte nos E.U.A.DemografiaPopulação 2 400 hab. (2010)FuncionamentoEstatuto township of North CarolinaIdentificadoresCódigo postal 27024GNIS 1027214Localização no mapa de Carolina do Norteeditar - editar código-fonte - editar Wikidata O município de Franklin (em inglês: Franklin Tow...

1991 Indian filmNirnayamTheatrical release posterDirected byPriyadarshanWritten byGanesh Patro (dialogues)Screenplay byPriyadarshanStory byPriyadarshanBased onVandanamProduced byD. KishoreMurali Mohan (Presents)StarringNagarjunaAmala AkkineniCinematographyS. KumarEdited byN. GopalakrishnanMusic byIlaiyaraajaProductioncompanyJayabheri Art ProductionsRelease date 21 February 1991 (1991-02-21) Running time164 minutesCountryIndiaLanguageTelugu Nirnayam (transl. Decision) is a...

 

 

UFC mixed martial arts event in 2010 UFC 118: Edgar vs. Penn 2The poster for UFC 118: Edgar vs. Penn 2InformationPromotionUltimate Fighting ChampionshipDateAugust 28, 2010VenueTD GardenCityBoston, MassachusettsAttendance14,168[1]Total gate$2,800,000[1]Buyrate570,000[2]Event chronology UFC 117: Silva vs. Sonnen UFC 118: Edgar vs. Penn 2 UFC Fight Night: Marquardt vs. Palhares UFC 118: Edgar vs. Penn 2 was a mixed martial arts event held by the Ultimate Fighting Champion...

 

 

Marquesado de Fontalba Corona marquesalPrimer titular Francisco de Cubas y González MontesConcesión Alfonso XIII de España,regencia de María Cristina de Habsburgo-Lorena22 de mayo de 1894Linajes Casa de FontalbaActual titular Luis de Arcos y van Reck[editar datos en Wikidata] El Marquesado de Fontalba es un título nobiliario español, creado el 22 de mayo de 1894, durante la minoría de edad del rey Alfonso XIII, por su madre la reina regente María Cristina de Habsburgo-Lorena...

尖閣諸島問題(せんかくしょとうもんだい、簡体字中国語: 钓鱼岛问题、繁体字中国語: 釣魚臺列嶼主權問題)とは、日本が沖縄県石垣市登野城尖閣として実効支配する尖閣諸島に対し、1970年代から中華人民共和国(中国)[1][2]と中華民国(台湾)が領有権を主張している問題のことである[3]。 尖閣諸島のうち3島の位置。青:魚釣島、黄:久場...

 

 

Not to be confused with Genesis Prize. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Genesis Awards – news · newspapers · books · scholar · JSTOR (May 2013) (Learn how and when to remove this template message) The Genesis Awards are awarded annually by the Humane Society of the United States (HSUS) to indi...

 

 

1923 film For other films, see Mark of the Beast (disambiguation) § Film. Mark of the BeastHelen Ware (l.) and Madelyn Clare in Mark of the BeastDirected byThomas Dixon Jr.Written byThomas Dixon Jr.Produced byThomas Dixon Jr.StarringRobert EllisMadelyn ClareWarner RichmondCinematographyHarry FischbeckProductioncompanyThomas Dixon ProductionsDistributed byW. W. Hodkinson CorporationRelease dateJune 24, 1923Running time6 reelsCountryUnited StatesLanguagesSilent English intertitles Mark of...

SteeplechaseThe Steeplechase at Pleasure BeachBlackpool Pleasure BeachLocationBlackpool Pleasure BeachCoordinates53°47′20″N 3°03′21″W / 53.7888°N 3.0558°W / 53.7888; -3.0558StatusOperatingOpening date1977Cost£813,000General statisticsTypeSteel – RacingManufacturerArrow DynamicsInversions0Height restriction50 in (127 cm)Tracks3TrainsSingle car trains. Riders are arranged inline in 2 rows for a total of 2 riders per train.Steeplechase at RCD...

 

 

تشرم خوران السفلي چرم خوران سفلي  - قرية -  تقسيم إداري البلد إيران  الدولة  إيران المحافظة أذربيجان الشرقية المقاطعة مقاطعة بستان أباد الناحية ناحية تيكمه داش القسم الريفي قسم عباس الغربي الريفي إحداثيات 37°44′43″N 46°59′23″E / 37.74528°N 46.98972°E / 37.74528; 4...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!