Autoregressive conditional heteroskedasticity

In econometrics, the autoregressive conditional heteroskedasticity (ARCH) model is a statistical model for time series data that describes the variance of the current error term or innovation as a function of the actual sizes of the previous time periods' error terms;[1] often the variance is related to the squares of the previous innovations. The ARCH model is appropriate when the error variance in a time series follows an autoregressive (AR) model; if an autoregressive moving average (ARMA) model is assumed for the error variance, the model is a generalized autoregressive conditional heteroskedasticity (GARCH) model.[2]

ARCH models are commonly employed in modeling financial time series that exhibit time-varying volatility and volatility clustering, i.e. periods of swings interspersed with periods of relative calm. ARCH-type models are sometimes considered to be in the family of stochastic volatility models, although this is strictly incorrect since at time t the volatility is completely predetermined (deterministic) given previous values.[3]

Model specification

To model a time series using an ARCH process, let denote the error terms (return residuals, with respect to a mean process), i.e. the series terms. These are split into a stochastic piece and a time-dependent standard deviation characterizing the typical size of the terms so that

The random variable is a strong white noise process. The series is modeled by

,
where and .

An ARCH(q) model can be estimated using ordinary least squares. A method for testing whether the residuals exhibit time-varying heteroskedasticity using the Lagrange multiplier test was proposed by Engle (1982). This procedure is as follows:

  1. Estimate the best fitting autoregressive model AR(q) .
  2. Obtain the squares of the error and regress them on a constant and q lagged values:
    where q is the length of ARCH lags.
  3. The null hypothesis is that, in the absence of ARCH components, we have for all . The alternative hypothesis is that, in the presence of ARCH components, at least one of the estimated coefficients must be significant. In a sample of T residuals under the null hypothesis of no ARCH errors, the test statistic T'R² follows distribution with q degrees of freedom, where is the number of equations in the model which fits the residuals vs the lags (i.e. ). If T'R² is greater than the Chi-square table value, we reject the null hypothesis and conclude there is an ARCH effect in the ARMA model. If T'R² is smaller than the Chi-square table value, we do not reject the null hypothesis.

GARCH

If an autoregressive moving average (ARMA) model is assumed for the error variance, the model is a generalized autoregressive conditional heteroskedasticity (GARCH) model.[2]

In that case, the GARCH (p, q) model (where p is the order of the GARCH terms and q is the order of the ARCH terms ), following the notation of the original paper, is given by

Generally, when testing for heteroskedasticity in econometric models, the best test is the White test. However, when dealing with time series data, this means to test for ARCH and GARCH errors.

Exponentially weighted moving average (EWMA) is an alternative model in a separate class of exponential smoothing models. As an alternative to GARCH modelling it has some attractive properties such as a greater weight upon more recent observations, but also drawbacks such as an arbitrary decay factor that introduces subjectivity into the estimation.

GARCH(p, q) model specification

The lag length p of a GARCH(p, q) process is established in three steps:

  1. Estimate the best fitting AR(q) model
    .
  2. Compute and plot the autocorrelations of by
  3. The asymptotic, that is for large samples, standard deviation of is . Individual values that are larger than this indicate GARCH errors. To estimate the total number of lags, use the Ljung–Box test until the value of these are less than, say, 10% significant. The Ljung–Box Q-statistic follows distribution with n degrees of freedom if the squared residuals are uncorrelated. It is recommended to consider up to T/4 values of n. The null hypothesis states that there are no ARCH or GARCH errors. Rejecting the null thus means that such errors exist in the conditional variance.

NGARCH

NAGARCH

Nonlinear Asymmetric GARCH(1,1) (NAGARCH) is a model with the specification:[6][7]

,
where and , which ensures the non-negativity and stationarity of the variance process.

For stock returns, parameter is usually estimated to be positive; in this case, it reflects a phenomenon commonly referred to as the "leverage effect", signifying that negative returns increase future volatility by a larger amount than positive returns of the same magnitude.[6][7]

This model should not be confused with the NARCH model, together with the NGARCH extension, introduced by Higgins and Bera in 1992.[8]

IGARCH

Integrated Generalized Autoregressive Conditional heteroskedasticity (IGARCH) is a restricted version of the GARCH model, where the persistent parameters sum up to one, and imports a unit root in the GARCH process.[9] The condition for this is

.

EGARCH

The exponential generalized autoregressive conditional heteroskedastic (EGARCH) model by Nelson & Cao (1991) is another form of the GARCH model. Formally, an EGARCH(p,q):

where , is the conditional variance, , , , and are coefficients. may be a standard normal variable or come from a generalized error distribution. The formulation for allows the sign and the magnitude of to have separate effects on the volatility. This is particularly useful in an asset pricing context.[10][11]

Since may be negative, there are no sign restrictions for the parameters.

GARCH-M

The GARCH-in-mean (GARCH-M) model adds a heteroskedasticity term into the mean equation. It has the specification:

The residual is defined as:

QGARCH

The Quadratic GARCH (QGARCH) model by Sentana (1995) is used to model asymmetric effects of positive and negative shocks.

In the example of a GARCH(1,1) model, the residual process is

where is i.i.d. and

GJR-GARCH

Similar to QGARCH, the Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model by Glosten, Jagannathan and Runkle (1993) also models asymmetry in the ARCH process. The suggestion is to model where is i.i.d., and

where if , and if .

TGARCH model

The Threshold GARCH (TGARCH) model by Zakoian (1994) is similar to GJR GARCH. The specification is one on conditional standard deviation instead of conditional variance:

where if , and if . Likewise, if , and if .

fGARCH

Hentschel's fGARCH model,[12] also known as Family GARCH, is an omnibus model that nests a variety of other popular symmetric and asymmetric GARCH models including APARCH, GJR, AVGARCH, NGARCH, etc.

COGARCH

In 2004, Claudia Klüppelberg, Alexander Lindner and Ross Maller proposed a continuous-time generalization of the discrete-time GARCH(1,1) process. The idea is to start with the GARCH(1,1) model equations

and then to replace the strong white noise process by the infinitesimal increments of a Lévy process , and the squared noise process by the increments , where

is the purely discontinuous part of the quadratic variation process of . The result is the following system of stochastic differential equations:

where the positive parameters , and are determined by , and . Now given some initial condition , the system above has a pathwise unique solution which is then called the continuous-time GARCH (COGARCH) model.[13]

ZD-GARCH

Unlike GARCH model, the Zero-Drift GARCH (ZD-GARCH) model by Li, Zhang, Zhu and Ling (2018) [14] lets the drift term in the first order GARCH model. The ZD-GARCH model is to model , where is i.i.d., and

The ZD-GARCH model does not require , and hence it nests the Exponentially weighted moving average (EWMA) model in "RiskMetrics". Since the drift term , the ZD-GARCH model is always non-stationary, and its statistical inference methods are quite different from those for the classical GARCH model. Based on the historical data, the parameters and can be estimated by the generalized QMLE method.

Spatial GARCH

Spatial GARCH processes by Otto, Schmid and Garthoff (2018) [15] are considered as the spatial equivalent to the temporal generalized autoregressive conditional heteroscedasticity (GARCH) models. In contrast to the temporal ARCH model, in which the distribution is known given the full information set for the prior periods, the distribution is not straightforward in the spatial and spatiotemporal setting due to the interdependence between neighboring spatial locations. The spatial model is given by and

where denotes the -th spatial location and refers to the -th entry of a spatial weight matrix and for . The spatial weight matrix defines which locations are considered to be adjacent.

Gaussian process-driven GARCH

In a different vein, the machine learning community has proposed the use of Gaussian process regression models to obtain a GARCH scheme.[16] This results in a nonparametric modelling scheme, which allows for: (i) advanced robustness to overfitting, since the model marginalises over its parameters to perform inference, under a Bayesian inference rationale; and (ii) capturing highly-nonlinear dependencies without increasing model complexity.[citation needed]

References

  1. ^ Engle, Robert F. (1982). "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation". Econometrica. 50 (4): 987–1007. doi:10.2307/1912773. JSTOR 1912773.
  2. ^ a b Bollerslev, Tim (1986). "Generalized Autoregressive Conditional Heteroskedasticity". Journal of Econometrics. 31 (3): 307–327. CiteSeerX 10.1.1.468.2892. doi:10.1016/0304-4076(86)90063-1. S2CID 8797625.
  3. ^ Brooks, Chris (2014). Introductory Econometrics for Finance (3rd ed.). Cambridge: Cambridge University Press. p. 461. ISBN 9781107661455.
  4. ^ Lanne, Markku; Saikkonen, Pentti (July 2005). "Non-linear GARCH models for highly persistent volatility" (PDF). The Econometrics Journal. 8 (2): 251–276. doi:10.1111/j.1368-423X.2005.00163.x. JSTOR 23113641. S2CID 15252964.
  5. ^ Bollerslev, Tim; Russell, Jeffrey; Watson, Mark (May 2010). "Chapter 8: Glossary to ARCH (GARCH)" (PDF). Volatility and Time Series Econometrics: Essays in Honor of Robert Engle (1st ed.). Oxford: Oxford University Press. pp. 137–163. ISBN 9780199549498. Retrieved 27 October 2017.
  6. ^ a b Engle, Robert F.; Ng, Victor K. (1993). "Measuring and testing the impact of news on volatility" (PDF). Journal of Finance. 48 (5): 1749–1778. doi:10.1111/j.1540-6261.1993.tb05127.x. SSRN 262096. It is not yet clear in the finance literature that the asymmetric properties of variances are due to changing leverage. The name "leverage effect" is used simply because it is popular among researchers when referring to such a phenomenon.
  7. ^ a b Posedel, Petra (2006). "Analysis Of The Exchange Rate And Pricing Foreign Currency Options On The Croatian Market: The Ngarch Model As An Alternative To The Black Scholes Model" (PDF). Financial Theory and Practice. 30 (4): 347–368. Special attention to the model is given by the parameter of asymmetry [theta (θ)] which describes the correlation between returns and variance.6 ...
    6 In the case of analyzing stock returns, the positive value of [theta] reflects the empirically well known leverage effect indicating that a downward movement in the price of a stock causes more of an increase in variance more than a same value downward movement in the price of a stock, meaning that returns and variance are negatively correlated
  8. ^ Higgins, M.L; Bera, A.K (1992). "A Class of Nonlinear Arch Models". International Economic Review. 33 (1): 137–158. doi:10.2307/2526988. JSTOR 2526988.
  9. ^ Caporale, Guglielmo Maria; Pittis, Nikitas; Spagnolo, Nicola (October 2003). "IGARCH models and structural breaks". Applied Economics Letters. 10 (12): 765–768. doi:10.1080/1350485032000138403. ISSN 1350-4851.
  10. ^ St. Pierre, Eilleen F. (1998). "Estimating EGARCH-M Models: Science or Art". The Quarterly Review of Economics and Finance. 38 (2): 167–180. doi:10.1016/S1062-9769(99)80110-0.
  11. ^ Chatterjee, Swarn; Hubble, Amy (2016). "Day-Of-The-Whieek Effect In Us Biotechnology Stocks—Do Policy Changes And Economic Cycles Matter?". Annals of Financial Economics. 11 (2): 1–17. doi:10.1142/S2010495216500081.
  12. ^ Hentschel, Ludger (1995). "All in the family Nesting symmetric and asymmetric GARCH models". Journal of Financial Economics. 39 (1): 71–104. CiteSeerX 10.1.1.557.8941. doi:10.1016/0304-405X(94)00821-H.
  13. ^ Klüppelberg, C.; Lindner, A.; Maller, R. (2004). "A continuous-time GARCH process driven by a Lévy process: stationarity and second-order behaviour". Journal of Applied Probability. 41 (3): 601–622. doi:10.1239/jap/1091543413. hdl:10419/31047. S2CID 17943198.
  14. ^ Li, D.; Zhang, X.; Zhu, K.; Ling, S. (2018). "The ZD-GARCH model: A new way to study heteroscedasticity" (PDF). Journal of Econometrics. 202 (1): 1–17. doi:10.1016/j.jeconom.2017.09.003.
  15. ^ Otto, P.; Schmid, W.; Garthoff, R. (2018). "Generalised spatial and spatiotemporal autoregressive conditional heteroscedasticity". Spatial Statistics. 26 (1): 125–145. arXiv:1609.00711. doi:10.1016/j.spasta.2018.07.005. S2CID 88521485.
  16. ^ Platanios, E.; Chatzis, S. (2014). "Gaussian process-mixture conditional heteroscedasticity". IEEE Transactions on Pattern Analysis and Machine Intelligence. 36 (5): 889–900. arXiv:1211.4410. doi:10.1109/TPAMI.2013.183. PMID 26353224. S2CID 10424638.

Further reading

Read other articles:

Ini adalah nama Batak Toba, marganya adalah Simorangkir. Dr. Mr.Johannes Chrisos Tomus SimorangkirSHAnggota KonstituanteMasa jabatan9 November 1956 – 5 Juli 1959PresidenSukarnoAnggota Dewan Perwakilan Rakyat Gotong RoyongMasa jabatan1 Februari 1967 – 28 Oktober 1971PresidenSukarnoSuhartoKetua Partai Kristen IndonesiaMasa jabatan11 Februari 1962 – 11 Januari 1973PresidenSoekarnoSoehartoRektor Universitas Kristen IndonesiaMasa jabatan1962–1966PresidenSukarnoKe...

 

BatuwarnoKecamatanPeta lokasi Kecamatan BatuwarnoNegara IndonesiaProvinsiJawa TengahKabupatenWonogiriPemerintahan • CamatSyamsu Edi Budiman, BAPopulasi • Total18,235 (2.003) jiwaKode Kemendagri33.12.04 Kode BPS3312050 Luas51,65 km²Desa/kelurahan7 desa1 kelurahan Batuwarno adalah sebuah kecamatan di Kabupaten Wonogiri, Jawa Tengah. Kecamatan ini berjarak sekitar 42 Km dari ibu kota Kabupaten Wonogiri ke arah selatan melalui Baturetno. Pusat pemerintahannya berada ...

 

?ТроодонтидиЧас існування: пізня юра - крейдовий період163–66 млн р. т. PreꞒ Ꞓ O S D C P T J K Ꝑ N Zanabazar — реконструкція Біологічна класифікація Домен: Ядерні (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Завропсиди (Sauropsida) Надряд: Динозаври (Dinosauria) Ряд: Ящеротазові (Sa...

Mac OS X v10.5 «Leopard» Загальний вигляд Mac OS X Leopard.Розробник Apple ComputerРодина ОС Mac OS XВихідна модель Closed sourceОстаннійпередперегляд build 9A321Тип ядра Гібридне ядро (XNU)Ліцензія APSL and Apple EULA www.apple.com/macosx/leopard Частина серії проmacOS Особливості Історія[en] Перехід на процесори Intel[en] Перехід на Apple...

 

Jalan Sunter Kemayoran Jalan Sunter Kemayoran adalah nama salah satu jalan di Jakarta yang menghubungkan kawasan Sunter di timur dan Kemayoran di barat. Jalan ini melintang sepanjang 3 km dari Sunter Jaya, Tanjung Priok, Jakarta Utara sampai Kebon Kosong, Kemayoran, Jakarta Pusat. Jalain melintasi 3 kelurahan, yaitu: Sunter Jaya, Tanjung Priok, Jakarta Utara Kebon Kosong, Kemayoran, Jakarta Pusat Pademangan Timur, Pademangan, Jakarta Utara Di jalan ini dipenuhi oleh lapak pedagang kaki l...

 

Donald Trump saat sebuah pawai resmi dalam kampanye presidensial 2016 di Arizona Trumpisme adalah sebuah istilah untuk ideologi politik, gaya pemerintahan,[1] gerakan politik dan serangkaian mekanisme untuk mengakuisisi dan menjaga kekuasaan yang diasosiasikan dengan presiden Amerika Serikat Donald Trump dan basis politiknya.[2][3] Ini adalah sebuah versi politik Amerika dari sayap kanan sampai sayap kanan jauh,[4][5] sentimen nasional-populis yang tamp...

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Mononykus – berita · surat kabar · buku · cendekiawan · JSTOR MononykusRentang fosil: Late Cretaceous, 70 jtyl PreЄ Є O S D C P T J K Pg N ↓ Reconstructed skeleton Klasifikasi ilmiah Kerajaa...

 

Kriegerdenkmal in Posen Das Kriegerdenkmal war ein Denkmal in Posen. Es wurde 1870 zur Erinnerung an die Gefallenen der Schlacht bei Nachod von 1866 eingeweiht und 1919 wieder abgerissen. Inhaltsverzeichnis 1 Geschichte 2 Denkmal 3 Literatur 4 Weblinks Geschichte Die Schlacht bei Nachod am 27. Juni 1866 war die erste größere militärische Auseinandersetzung des Preußisch-Österreichischen Krieges, sie endete mit einem preußischen Sieg. 1868 wurde durch Generäle des V. Armee-Corps beschlo...

 

Війна у В'єтнаміДата14 грудня 1964 — 29 березня 1973МісцеПівнічно-східний ЛаосРезультат Стратегічний провал США: нездатність перекрити шлях Хо Ши МінаСторони Сполучені Штати Північний В'єтнам Патет Лао Операція «Баррел-Ролл» (англ. Operation Barrel Roll) — військова таємна кампані...

Ghanaian football manager, scout and former player Otto Addo Otto Addo at Tag der Legenden 2016Personal informationFull name Nana Otto Addo[1]Date of birth (1975-06-09) 9 June 1975 (age 48)Place of birth Hamburg, West GermanyHeight 1.89 m (6 ft 2 in)Position(s) Attacking midfielderWingerTeam informationCurrent team Borussia Dortmund (talent coach)Senior career*Years Team Apps (Gls)1992–1993 Bramfelder SV 1993–1996 VfL 93 Hamburg 80 (4)1996–1999 Hannover 96 97...

 

Russian-born Zionist and WW1 veteran Joseph TrumpeldorJoseph Trumpeldor in the uniform of a British Army officer but without visible badges, c. World War OneBorn21 November 1880Pyatigorsk, Russian EmpireDied1 March 1920(1920-03-01) (aged 39)Tel Hai, Occupied Enemy Territory AdministrationBattles/warsRusso-Japanese War Port Arthur (WIA) World War I Battle of Gallipoli (WIA) Intercommunal conflict in Mandatory Palestine Battle of Tel Hai † AwardsCross of St. George Jos...

 

British architect Brakspear was consulting architect to the Dean and Canons of Windsor; pictured is Windsor Castle's Round Tower Sir Harold Brakspear KCVO (10 March 1870 – 20 November 1934[1]) was an English restoration architect and archaeologist.[2] He restored a number of ancient and notable buildings, including[2] Bath Abbey, Windsor Castle, Brownston House in Devizes and St Cyriac's Church in Lacock.[3] He lived in Corsham, Wiltshire, close to his projec...

Overview of tourism in Bangladesh A deer in Sundarbans, The largest mangrove forest in the world and a UNESCO World Heritage Site.Sajek Valley in Rangamati, A site on the peak of the mountains.A beach restaurant in Cox's Bazar, The largest natural beach in the world.Kaptai Lake in Rangamati, which is the largest natural lake in Bangladesh.Buddha Dhatu Jadi, It is the largest Theravada Buddhist temple in Bangladesh and has the second-largest Buddha statue in the country. Tourism in Bangladesh ...

 

Eko Edi SantosoInformasi pribadiLahir25 Maret 1951 (umur 72)Malang, Jawa TimurKebangsaanIndonesiaAlma materAKABRI (1974)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan UdaraMasa dinas1974-2008Pangkat Marsekal Muda TNISatuanKorps PenerbangSunting kotak info • L • B Marsekal Muda TNI (Purn.) Eko Edi Santoso, S.Ip (lahir 25 Maret 1951) adalah seorang purnawirawan perwira tinggi TNI Angkatan Udara lulusan Akademi Angkatan Bersenjata Republik Indonesia (AKABRI) ...

 

American reality television series Fire IslandGenreRealityStarring Khasan Brailsford Jorge Bustillos Cheyenne Parker Justin Russo Patrick McDonald Brandon Osorio Country of originUnited StatesOriginal languageEnglishNo. of episodes7ProductionExecutive producers Mark Consuelos Kelly Ripa Albert Bianchini Lenid Rolov Running time42 minutesProduction companyMilojo ProductionsOriginal releaseNetworkLogo TV (Preview: VH1)ReleaseApril 21 (2017-04-21) –June 1, 2017 (2017-06-01) Fire...

هرموله مركز إداري خريطة محافظات منطقة القصيم تقسيم إداري  الدولة  السعودية  المنطقة منطقة القصيم  المحافظة محافظة ضرية الحكومة  أمير المنطقة فيصل بن مشعل بن سعود آل سعود  نائب أمير المنطقة فهد بن تركي بن فيصل بن تركي آل سعود تعديل مصدري - تعديل   هرموله هو م...

 

TegalwaruKecamatanPeta lokasi Kecamatan TegalwaruNegara IndonesiaProvinsiJawa BaratKabupatenKarawangPemerintahan • Camat-Populasi • Total34,675 jiwa jiwaKode Kemendagri32.15.28 Kode BPS3215011 Luas86,34 km2Desa/kelurahan9 Tegalwaru adalah sebuah kecamatan di Kabupaten Karawang, Provinsi Jawa Barat, Indonesia. Kecamatan Tegalwaru merupakan kecamatan dengan jumlah penduduk paling sedikit di Kabupaten Karawang dan juga kecamatan paling selatan secara letak geografis....

 

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2023) (Learn how and when to remove this template message) Uniform and colonel’s flag of the Regiment of Hibernia in Spanish service, mid-eighteenth century The Regimiento Hibernia (Regiment of Hibernia) was one of the Spanish army's foreign regiments (Infantería de línea extranjera). Known by many in Sp...

Academy in Swindon, Wiltshire, EnglandKingsdown SchoolAddressHyde Road, Stratton St MargaretSwindon, Wiltshire, SN2 7SHEnglandCoordinates51°35′31″N 1°45′32″W / 51.592°N 1.759°W / 51.592; -1.759InformationTypeAcademyMottoInnovative Education - Traditional ValuesReligious affiliation(s)ChristianEstablished1932Department for Education URN145139 TablesOfstedReportsChair of GovernorsLynn ScraggHeadteacherEmma Leigh-Bennett[1]GenderMixedAge11 to 16Enr...

 

Traditional mosaic technique Opus tessellatum mosaic (3rd century AD) Opus tessellatum is the Latin name for the normal technique of Greek and Roman mosaic, made from tesserae that are larger than about 4 mm. It is distinguished from the finer opus vermiculatum which used tiny tesserae, typically cubes of 4 millimetres or less, and was produced in workshops in relatively small panels which were transported to the site glued to some temporary support. Opus tessellatum was used for larger areas...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!