Geometric Brownian motion

For the simulation generating the realizations, see below.

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift.[1] It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

Technical definition: the SDE

A stochastic process St is said to follow a GBM if it satisfies the following stochastic differential equation (SDE):

where is a Wiener process or Brownian motion, and ('the percentage drift') and ('the percentage volatility') are constants.

The former parameter is used to model deterministic trends, while the latter parameter models unpredictable events occurring during the motion.

Solving the SDE

For an arbitrary initial value S0 the above SDE has the analytic solution (under Itô's interpretation):

The derivation requires the use of Itô calculus. Applying Itô's formula leads to

where is the quadratic variation of the SDE.

When , converges to 0 faster than , since . So the above infinitesimal can be simplified by

Plugging the value of in the above equation and simplifying we obtain

Taking the exponential and multiplying both sides by gives the solution claimed above.

Arithmetic Brownian Motion

The process for , satisfying the SDE

or more generally the process solving the SDE

where and are real constants and for an initial condition , is called an Arithmetic Brownian Motion (ABM). This was the model postulated by Louis Bachelier in 1900 for stock prices, in the first published attempt to model Brownian motion, known today as Bachelier model. As was shown above, the ABM SDE can be obtained through the logarithm of a GBM via Itô's formula. Similarly, a GBM can be obtained by exponentiation of an ABM through Itô's formula.

Properties of GBM

The above solution (for any value of t) is a log-normally distributed random variable with expected value and variance given by[2]

They can be derived using the fact that is a martingale, and that

The probability density function of is:

Derivation of GBM probability density function

To derive the probability density function for GBM, we must use the Fokker-Planck equation to evaluate the time evolution of the PDF:

where is the Dirac delta function. To simplify the computation, we may introduce a logarithmic transform , leading to the form of GBM:

Then the equivalent Fokker-Planck equation for the evolution of the PDF becomes:

Define and . By introducing the new variables and , the derivatives in the Fokker-Planck equation may be transformed as:

Leading to the new form of the Fokker-Planck equation:

However, this is the canonical form of the heat equation. which has the solution given by the heat kernel:

Plugging in the original variables leads to the PDF for GBM:

When deriving further properties of GBM, use can be made of the SDE of which GBM is the solution, or the explicit solution given above can be used. For example, consider the stochastic process log(St). This is an interesting process, because in the Black–Scholes model it is related to the log return of the stock price. Using Itô's lemma with f(S) = log(S) gives

It follows that .

This result can also be derived by applying the logarithm to the explicit solution of GBM:

Taking the expectation yields the same result as above: .

Simulating sample paths

# Python code for the plot

import numpy as np
import matplotlib.pyplot as plt

mu = 1
n = 50
dt = 0.1
x0 = 100
np.random.seed(1)

sigma = np.arange(0.8, 2, 0.2)

x = np.exp(
    (mu - sigma ** 2 / 2) * dt
    + sigma * np.random.normal(0, np.sqrt(dt), size=(len(sigma), n)).T
)
x = np.vstack([np.ones(len(sigma)), x])
x = x0 * x.cumprod(axis=0)

plt.plot(x)
plt.legend(np.round(sigma, 2))
plt.xlabel("$t$")
plt.ylabel("$x$")
plt.title(
    "Realizations of Geometric Brownian Motion with different variances\n $\mu=1$"
)
plt.show()

Multivariate version

GBM can be extended to the case where there are multiple correlated price paths.[3]

Each price path follows the underlying process

where the Wiener processes are correlated such that where .

For the multivariate case, this implies that

A multivariate formulation that maintains the driving Brownian motions independent is

where the correlation between and is now expressed through the terms.

Use in finance

Geometric Brownian motion is used to model stock prices in the Black–Scholes model and is the most widely used model of stock price behavior.[4]

Some of the arguments for using GBM to model stock prices are:

  • The expected returns of GBM are independent of the value of the process (stock price), which agrees with what we would expect in reality.[4]
  • A GBM process only assumes positive values, just like real stock prices.
  • A GBM process shows the same kind of 'roughness' in its paths as we see in real stock prices.
  • Calculations with GBM processes are relatively easy.

However, GBM is not a completely realistic model, in particular it falls short of reality in the following points:

  • In real stock prices, volatility changes over time (possibly stochastically), but in GBM, volatility is assumed constant.
  • In real life, stock prices often show jumps caused by unpredictable events or news, but in GBM, the path is continuous (no discontinuity).

Apart from modeling stock prices, Geometric Brownian motion has also found applications in the monitoring of trading strategies.[5]

Extensions

In an attempt to make GBM more realistic as a model for stock prices, also in relation to the volatility smile problem, one can drop the assumption that the volatility () is constant. If we assume that the volatility is a deterministic function of the stock price and time, this is called a local volatility model. A straightforward extension of the Black Scholes GBM is a local volatility SDE whose distribution is a mixture of distributions of GBM, the lognormal mixture dynamics, resulting in a convex combination of Black Scholes prices for options.[3][6][7][8] If instead we assume that the volatility has a randomness of its own—often described by a different equation driven by a different Brownian Motion—the model is called a stochastic volatility model, see for example the Heston model.[9]

See also

References

  1. ^ Ross, Sheldon M. (2014). "Variations on Brownian Motion". Introduction to Probability Models (11th ed.). Amsterdam: Elsevier. pp. 612–14. ISBN 978-0-12-407948-9.
  2. ^ Øksendal, Bernt K. (2002), Stochastic Differential Equations: An Introduction with Applications, Springer, p. 326, ISBN 3-540-63720-6
  3. ^ a b Musiela, M., and Rutkowski, M. (2004), Martingale Methods in Financial Modelling, 2nd Edition, Springer Verlag, Berlin.
  4. ^ a b Hull, John (2009). "12.3". Options, Futures, and other Derivatives (7 ed.).
  5. ^ Rej, A.; Seager, P.; Bouchaud, J.-P. (January 2018). "You are in a drawdown. When should you start worrying?". Wilmott. 2018 (93): 56–59. arXiv:1707.01457. doi:10.1002/wilm.10646. S2CID 157827746.
  6. ^ Fengler, M. R. (2005), Semiparametric modeling of implied volatility, Springer Verlag, Berlin. DOI https://doi.org/10.1007/3-540-30591-2
  7. ^ Brigo, Damiano; Mercurio, Fabio (2002). "Lognormal-mixture dynamics and calibration to market volatility smiles". International Journal of Theoretical and Applied Finance. 5 (4): 427–446. doi:10.1142/S0219024902001511.
  8. ^ Brigo, D, Mercurio, F, Sartorelli, G. (2003). Alternative asset-price dynamics and volatility smile, QUANT FINANC, 2003, Vol: 3, Pages: 173 - 183, ISSN 1469-7688
  9. ^ Heston, Steven L. (1993). "A closed-form solution for options with stochastic volatility with applications to bond and currency options". Review of Financial Studies. 6 (2): 327–343. doi:10.1093/rfs/6.2.327. JSTOR 2962057. S2CID 16091300.

Read other articles:

Приготування арахісової пасти Пізня вечеря в Бісау Кухня Гвінеї-Бисау почасти визначається географією, історією та економікою цієї країни. Так, основою харчування мешканців узбережжя є рис, а у віддалених від Атлантичного океану регіонах — пшоно. Велика частина рису...

 

Untuk perusahaan perkeretaapian di Indonesia bernama PT Kereta Api Indonesia (Persero), lihat Kereta Api Indonesia. Kereta api penumpang kelas eksekutif. Kereta api barang angkutan kontainer. Kereta rel listrik komuter. Kereta api (bahasa Inggris: train) adalah bentuk pengangkutan rel yang terdiri dari serangkaian kendaraan yang ditarik sepanjang jalur kereta api untuk mengangkut kargo atau penumpang. Gaya gerak disediakan oleh lokomotif yang terpisah atau motor individu dalam beberapa un...

 

Franz Xaver Schwarz Franz Xaver Schwarz (* 27. November 1875 in Günzburg; † 2. Dezember 1947 im Internierungslager bei Regensburg) war ein deutscher Politiker der NSDAP. Schwarz war als „Reichsschatzmeister der NSDAP“ (Reichsleiter) und SS-Oberst-Gruppenführer einer der wichtigsten Funktionäre der Partei. Inhaltsverzeichnis 1 Leben 1.1 Frühes Leben 1.2 Laufbahn in der NSDAP 1.3 Nachkriegszeit 2 Ehe und Familie 3 Schriften 4 Literatur 5 Weblinks 6 Einzelnachweise Leben Frühes Leben ...

Stasiun Uzen-Nakayama羽前中山駅Bangunan baru Stasiun Uzen-Nakayam pada Agustus 2005Lokasi3590, Nakayama, Kaminoyama-shi, Yamagata-ken 999-3246JepangKoordinat38°07′28″N 140°13′06″E / 38.124467°N 140.218375°E / 38.124467; 140.218375Koordinat: 38°07′28″N 140°13′06″E / 38.124467°N 140.218375°E / 38.124467; 140.218375Pengelola JR EastJalur■ Jalur Utama ŌuLetak dari pangkal68.3 km dari FukushimaJumlah peron2 peron sisiI...

 

瀑布基本资料导演鍾孟宏监制曾少千瞿友寧董成瑜制片廖世芳瞿友寧董成瑜王亭坤張承宏梁宏志编剧鍾孟宏張耀升主演賈靜雯王淨配乐盧律銘摄影鍾孟宏剪辑賴秀雄制片商本地風光電影氧氣電影鏡文學三皇生物科技百聿數碼創意華映娛樂片长129分鐘产地 臺灣语言華語上映及发行上映日期 2021年9月6日 (2021-09-06)(威尼斯影展) 2021年9月13日 (2021-09-13)(多倫多影展) 2021...

 

68-ма армія СРСРНа службі 1 лютого — 5 листопада 1943Країна СРСРНалежність Північно-Західний фронт Резерв Ставки ВГК Західний фронтВид Червона арміяТип сухопутні військаРоль загальновійськоваЧисельність арміяВійни/битви Німецько-радянська війнаСмоленська операція (1...

No debe confundirse con WWE Women's Championship el campeonato antiguo. No debe confundirse con WWE Women's Championship el campeonato femenino de SmackDown. Women's World ChampionshipNombre Campeonato Mundial FemeninoPromoción WWEMarca RawReinados oficiales 26Campeón actual Rhea RipleyFecha de obtención 1 de abril de 2023Fecha de creación 23 de agosto de 2016Primer campeón Becky LynchOtros nombres WWE SmackDown Women's Championship(2016-2023) Women's World Championship(2023-presente) &#...

 

British Army general Julian HaslerBorn(1868-10-16)16 October 1868Aldingbourne House, ChichesterDied27 April 1915(1915-04-27) (aged 46)Ypres, BelgiumAllegianceUnited KingdomService/branchBritish ArmyYears of service1888–1915RankBrigadier-GeneralUnitEast Kent RegimentCommands held11th Infantry BrigadeBattles/warsSouth African WarFirst World WarAwardsMention in DispatchesRelationsWilliam Wyndham Hasler (father) Brigadier-General Julian Hasler (16 October 1868 – 27 April 1915), was ...

 

American basketball player (born 1980) Caron ButlerButler with the Washington Wizards in 2007Miami HeatPositionAssistant coachLeagueNBAPersonal informationBorn (1980-03-13) March 13, 1980 (age 43)Racine, Wisconsin, U.S.Listed height6 ft 7 in (2.01 m)Listed weight228 lb (103 kg)Career informationHigh school Racine Park (Racine, Wisconsin) Maine Central Institute(Pittsfield, Maine) CollegeUConn (2000–2002)NBA draft2002: 1st round, 10th overall pickSelected by the...

American historian This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Aviva Chomsky – news · newspapers · books · scholar · JSTOR (November 2017) (Learn how and when to remove this template message...

 

Line of tablet computers by Apple This article is about the line of devices. For the first device marketed with this name, see iPad Mini (1st generation). For the device currently marketed with this name, see iPad Mini (6th generation). Not to be confused with iPod Mini. iPad miniDeveloperApple Inc.ManufacturerFoxconn, Pegatron[1]Product familyiPadTypeTablet computerRelease dateNovember 2, 2012; 11 years ago (2012-11-02) (1st generation)Units sold600 millionOperating...

 

2010 video game 2010 video gameScott Pilgrim vs. The World: The GameForeground: Scott Pilgrim; Background, upper left: Stephen Stills; Lower left: Kim Pine; bottom: Ramona FlowersDeveloper(s)Ubisoft MontrealUbisoft Chengdu[a]Publisher(s)UbisoftDirector(s)Lei YuProducer(s)Caroline MartinDesigner(s)Jonathan LavigneZhu Bi JiaYan KaiJiang An QiOu Yue SongProgrammer(s)WeiKe ZengArtist(s)Paul RobertsonStéphane BoutinJonathan LavigneJustin CyrJonathan KimMariel CartwrightComposer(s)Anamanag...

Australian scientist Stephen SimpsonAC FRS FAABorn26 June 1957 Alma materUniversity of QueenslandKing's College LondonAwardsAustralian Laureate Fellowship (2009) Websitewww.sydney.edu.au/science/about/our-people/academic-staff/stephen-simpson.htmlAcademic careerFieldsEntomology, nutrition InstitutionsObesity AustraliaCharles Perkins Centre Stephen James Simpson AC[2] FRS FAA (born 26 June 1957)[1] is the executive director of Obesity Australia and the academic d...

 

  2009 Qatar Grand PrixRace detailsRace 1 of 17 races in the2009 Grand Prix motorcycle racing seasonDate12–13 April 2009Official nameCommercialbank Grand Prix of Qatar[1]LocationLosail International CircuitCoursePermanent racing facility5.380 km (3.343 mi)MotoGPPole positionRider Casey StonerTime 1:55.286Fastest lapRider Casey StonerTime 1:55.844PodiumFirst Casey StonerSecond Valentino RossiThird Jorge Lorenzo250 ccPole positionRider Álvaro BautistaTime 2:00.677...

 

Marksman On Mark Marksman C N60XX fitted with deepened pressurised fuselage, R-2800 engines and wing tip tanks Role Executive transportType of aircraft Manufacturer On Mark Engineering First flight January 1961[1] Introduction 1961 Produced 1961–1964 Number built 8[2] Developed from Douglas A-26 Invader The On Mark Marksman was an American high-speed civil executive aircraft converted from surplus Douglas A-26 Invader airframes by On Mark Engineering. Its antecedents wer...

Fast food chain Hartz ChickenTrade nameHartz Chicken BuffetTypePrivateIndustryFoodFounded1972; 51 years ago (1972) in Texas, United StatesFounderW. Lawrence Hartzog Sr.HeadquartersSpring, Texas, United StatesArea servedNorth America, MalaysiaProductsFast food, including fried chicken, french fries, yeast rolls, fried fish and salads, hot vegetables, hot soup and ice-cream.OwnerHartz Franchise Restaurants, LtdWebsitehartz-chicken.com Hartz Chicken (also known as Hartz Chicken...

 

For the match on June 8, 2017, see 2018 FIFA World Cup qualification – CONCACAF fifth round § United States v Trinidad and Tobago. Football matchTrinidad and Tobago v United States (2017)Ato Boldon Stadium hosted the matchEvent2018 FIFA World Cup qualification – CONCACAF fifth round Trinidad and Tobago United States 2 1 Panama qualifies for the 2018 FIFA World Cup Honduras advances to the CONCACAF–AFC inter-confederation play-off United States fails to qualify for the World Cup fo...

 

For the political alliance in Kerala, see United Democratic Front (Kerala). United Democratic Front is a front of eight political parties (Mizo National Front, Mizoram People's Conference, Zoram Nationalist Party, Maraland Democratic Front, Hmar People's Convention, Paite Tribes Council, Bharatiya Janata Party, and Nationalist Congress Party) in the Indian state of Mizoram.[1] The front fielded Robert Romawia Royte for Mizoram's lone Lok Sabha constituency in the 2014 Indian general e...

Witold Lutosławski nel 1993 Witold Lutosławski (Varsavia, 25 gennaio 1913 – Varsavia, 7 febbraio 1994) è stato un compositore e direttore d'orchestra polacco, uno dei maggiori compositori europei del XX secolo, e uno dei più importanti musicisti polacchi degli ultimi decenni. Lutoslawski fu studente del famoso professore Witold Maliszewski (1873 - 1939). Fu autore sensibile alla tradizione polacca quanto allo sperimentalismo dell'avanguardia viennese non rinnegando alcuni lasciti inelud...

 

Historic district in Michigan, United States United States historic placeGrand Circus Park Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district Looking southwestLocationDetroit, Michigan, U.S.Coordinates42°20′10″N 83°3′2″W / 42.33611°N 83.05056°W / 42.33611; -83.05056Built1867NRHP reference No.83000894; 00001488 (boundary increase)[1]Added to NRHPFebruary 28, 1983; December 07, 2000 (boundary increase); December...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!