Extreme value theory

Extreme value theory is used to model the risk of extreme, rare events, such as the 1755 Lisbon earthquake.

Extreme value theory or extreme value analysis (EVA) is the study of extremes in statistical distributions.

It is widely used in many disciplines, such as structural engineering, finance, economics, earth sciences, traffic prediction, and geological engineering. For example, EVA might be used in the field of hydrology to estimate the probability of an unusually large flooding event, such as the 100-year flood. Similarly, for the design of a breakwater, a coastal engineer would seek to estimate the 50 year wave and design the structure accordingly.

Data analysis

Two main approaches exist for practical extreme value analysis.

The first method relies on deriving block maxima (minima) series as a preliminary step. In many situations it is customary and convenient to extract the annual maxima (minima), generating an annual maxima series (AMS).

The second method relies on extracting, from a continuous record, the peak values reached for any period during which values exceed a certain threshold (falls below a certain threshold). This method is generally referred to as the peak over threshold method (POT).[1]

For AMS data, the analysis may partly rely on the results of the Fisher–Tippett–Gnedenko theorem, leading to the generalized extreme value distribution being selected for fitting.[2][3] However, in practice, various procedures are applied to select between a wider range of distributions. The theorem here relates to the limiting distributions for the minimum or the maximum of a very large collection of independent random variables from the same distribution. Given that the number of relevant random events within a year may be rather limited, it is unsurprising that analyses of observed AMS data often lead to distributions other than the generalized extreme value distribution (GEVD) being selected.[4]

For POT data, the analysis may involve fitting two distributions: One for the number of events in a time period considered and a second for the size of the exceedances.

A common assumption for the first is the Poisson distribution, with the generalized Pareto distribution being used for the exceedances. A tail-fitting can be based on the Pickands–Balkema–de Haan theorem.[5][6]

Novak (2011) reserves the term "POT method" to the case where the threshold is non-random, and distinguishes it from the case where one deals with exceedances of a random threshold.[7]

Applications

Applications of extreme value theory include predicting the probability distribution of:

History

The field of extreme value theory was pioneered by L. Tippett (1902–1985). Tippett was employed by the British Cotton Industry Research Association, where he worked to make cotton thread stronger. In his studies, he realized that the strength of a thread was controlled by the strength of its weakest fibres. With the help of R.A. Fisher, Tippet obtained three asymptotic limits describing the distributions of extremes assuming independent variables. E.J. Gumbel (1958)[25] codified this theory. These results can be extended to allow for slight correlations between variables, but the classical theory does not extend to strong correlations of the order of the variance. One universality class of particular interest is that of log-correlated fields, where the correlations decay logarithmically with the distance.

Univariate theory

The theory for extreme values of a single variable is governed by the extreme value theorem, also called the Fisher–Tippett–Gnedenko theorem, which describes which of the three possible distributions for extreme values applies for a particular statistical variable which is summarized in this section.

Multivariate theory

Extreme value theory in more than one variable introduces additional issues that have to be addressed. One problem that arises is that one must specify what constitutes an extreme event.[26] Although this is straightforward in the univariate case, there is no unambiguous way to do this in the multivariate case. The fundamental problem is that although it is possible to order a set of real-valued numbers, there is no natural way to order a set of vectors.

As an example, in the univariate case, given a set of observations it is straightforward to find the most extreme event simply by taking the maximum (or minimum) of the observations. However, in the bivariate case, given a set of observations , it is not immediately clear how to find the most extreme event. Suppose that one has measured the values at a specific time and the values at a later time. Which of these events would be considered more extreme? There is no universal answer to this question.

Another issue in the multivariate case is that the limiting model is not as fully prescribed as in the univariate case. In the univariate case, the model (GEV distribution) contains three parameters whose values are not predicted by the theory and must be obtained by fitting the distribution to the data. In the multivariate case, the model not only contains unknown parameters, but also a function whose exact form is not prescribed by the theory. However, this function must obey certain constraints.[27][28] It is not straightforward to devise estimators that obey such constraints though some have been recently constructed.[29][30][31]

As an example of an application, bivariate extreme value theory has been applied to ocean research.[26][32]

Non-stationary extremes

Statistical modeling for nonstationary time series was developed in the 1990s.[33] Methods for nonstationary multivariate extremes have been introduced more recently.[34] The latter can be used for tracking how the dependence between extreme values changes over time, or over another covariate.[35][36][37]

See also


References

  1. ^ Leadbetter, M.R. (1991). "On a basis for 'peaks over threshold' modeling". Statistics and Probability Letters. 12 (4): 357–362. doi:10.1016/0167-7152(91)90107-3.
  2. ^ Fisher & Tippett (1928)
  3. ^ Gnedenko (1943)
  4. ^ Embrechts, Klüppelberg & Mikosch (1997)
  5. ^ Pickands (1975)
  6. ^ Balkema & de Haan (1974)
  7. ^ Novak (2011)
  8. ^ Tippett, Lepore & Cohen (2016)
  9. ^ Batt, Ryan D.; Carpenter, Stephen R.; Ives, Anthony R. (March 2017). "Extreme events in lake ecosystem time series". Limnology and Oceanography Letters. 2 (3): 63. Bibcode:2017LimOL...2...63B. doi:10.1002/lol2.10037.
  10. ^ Alvarado, Sandberg & Pickford (1998), p. 68
  11. ^ Makkonen (2008)
  12. ^ Einmahl, J.H.J.; Smeets, S.G.W.R. (2009). Ultimate 100m world records through extreme-value theory (PDF) (Report). CentER Discussion Paper. Vol. 57. Tilburg University. Archived from the original (PDF) on 2016-03-12. Retrieved 2009-08-12.
  13. ^ Gembris, D.; Taylor, J.; Suter, D. (2002). "Trends and random fluctuations in athletics". Nature. 417 (6888): 506. Bibcode:2002Natur.417..506G. doi:10.1038/417506a. hdl:2003/25362. PMID 12037557. S2CID 13469470.
  14. ^ Gembris, D.; Taylor, J.; Suter, D. (2007). "Evolution of athletic records: Statistical effects versus real improvements". Journal of Applied Statistics. 34 (5): 529–545. Bibcode:2007JApSt..34..529G. doi:10.1080/02664760701234850. hdl:2003/25404. PMC 11134017. S2CID 55378036.
  15. ^ Spearing, H.; Tawn, J.; Irons, D.; Paulden, T.; Bennett, G. (2021). "Ranking, and other properties, of elite swimmers using extreme value theory". Journal of the Royal Statistical Society. Series A (Statistics in Society). 184 (1): 368–395. arXiv:1910.10070. doi:10.1111/rssa.12628. S2CID 204823947.
  16. ^ Songchitruksa, P.; Tarko, A.P. (2006). "The extreme value theory approach to safety estimation". Accident Analysis and Prevention. 38 (4): 811–822. doi:10.1016/j.aap.2006.02.003. PMID 16546103.
  17. ^ Orsini, F.; Gecchele, G.; Gastaldi, M.; Rossi, R. (2019). "Collision prediction in roundabouts: A comparative study of extreme value theory approaches". Transportmetrica. Series A: Transport Science. 15 (2): 556–572. doi:10.1080/23249935.2018.1515271. S2CID 158343873.
  18. ^ Tsinos, C.G.; Foukalas, F.; Khattab, T.; Lai, L. (February 2018). "On channel selection for carrier aggregation systems". IEEE Transactions on Communications. 66 (2): 808–818. doi:10.1109/TCOMM.2017.2757478. S2CID 3405114.
  19. ^ Wong, Felix; Collins, James J. (2 November 2020). "Evidence that coronavirus superspreading is fat-tailed". Proceedings of the National Academy of Sciences of the USA. 117 (47): 29416–29418. Bibcode:2020PNAS..11729416W. doi:10.1073/pnas.2018490117. ISSN 0027-8424. PMC 7703634. PMID 33139561.
  20. ^ Basnayake, Kanishka; Mazaud, David; Bemelmans, Alexis; Rouach, Nathalie; Korkotian, Eduard; Holcman, David (4 June 2019). "Fast calcium transients in dendritic spines driven by extreme statistics". PLOS Biology. 17 (6): e2006202. doi:10.1371/journal.pbio.2006202. ISSN 1545-7885. PMC 6548358. PMID 31163024.
  21. ^ Younis, Abubaker; Abdeljalil, Anwar; Omer, Ali (1 January 2023). "Determination of panel generation factor using peaks over threshold method and short-term data for an off-grid photovoltaic system in Sudan: A case of Khartoum city". Solar Energy. 249: 242–249. Bibcode:2023SoEn..249..242Y. doi:10.1016/j.solener.2022.11.039. ISSN 0038-092X. S2CID 254207549.
  22. ^ Fogg, Alexandra Ruth (2023). "Extreme Value Analysis of Ground Magnetometer Observations at Valentia Observatory, Ireland". Space Weather. 21 (e2023SW003565). doi:10.1029/2023SW003565.
  23. ^ Elvidge, Sean (2020). "Estimating the occurrence of geomagnetic activity using the Hilbert-Huang transform and extreme value theory". Space Weather. 17 (e2020SW002513). doi:10.1029/2020SW002513.
  24. ^ Bergin, Aisling (2023). "Extreme event statistics in Dst, SYM-H, and SMR geomagnetic indices". Space Weather. 21 (e2022SW003304). doi:10.1029/2022SW003304. hdl:10037/30641.
  25. ^ Gumbel (2004)
  26. ^ a b Morton, I.D.; Bowers, J. (December 1996). "Extreme value analysis in a multivariate offshore environment". Applied Ocean Research. 18 (6): 303–317. Bibcode:1996AppOR..18..303M. doi:10.1016/s0141-1187(97)00007-2. ISSN 0141-1187.
  27. ^ Beirlant, Jan; Goegebeur, Yuri; Teugels, Jozef; Segers, Johan (27 August 2004). Statistics of Extremes: Theory and applications. Wiley Series in Probability and Statistics. Chichester, UK: John Wiley & Sons, Ltd. doi:10.1002/0470012382. ISBN 978-0-470-01238-3.
  28. ^ Coles, Stuart (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. doi:10.1007/978-1-4471-3675-0. ISBN 978-1-84996-874-4. ISSN 0172-7397.
  29. ^ de Carvalho, M.; Davison, A.C. (2014). "Spectral density ratio models for multivariate extremes" (PDF). Journal of the American Statistical Association. 109: 764‒776. doi:10.1016/j.spl.2017.03.030. hdl:20.500.11820/9e2f7cff-d052-452a-b6a2-dc8095c44e0c. S2CID 53338058.
  30. ^ Hanson, T.; de Carvalho, M.; Chen, Yuhui (2017). "Bernstein polynomial angular densities of multivariate extreme value distributions" (PDF). Statistics and Probability Letters. 128: 60–66. doi:10.1016/j.spl.2017.03.030. hdl:20.500.11820/9e2f7cff-d052-452a-b6a2-dc8095c44e0c. S2CID 53338058.
  31. ^ de Carvalho, M. (2013). "A Euclidean likelihood estimator for bivariate tail dependence" (PDF). Communications in Statistics – Theory and Methods. 42 (7): 1176–1192. arXiv:1204.3524. doi:10.1080/03610926.2012.709905. S2CID 42652601.
  32. ^ Zachary, S.; Feld, G.; Ward, G.; Wolfram, J. (October 1998). "Multivariate extrapolation in the offshore environment". Applied Ocean Research. 20 (5): 273–295. Bibcode:1998AppOR..20..273Z. doi:10.1016/s0141-1187(98)00027-3. ISSN 0141-1187.
  33. ^ Davison, A.C.; Smith, Richard (1990). "Models for exceedances over high thresholds". Journal of the Royal Statistical Society. Series B (Methodological). 52 (3): 393–425. doi:10.1111/j.2517-6161.1990.tb01796.x.
  34. ^ de Carvalho, M. (2016). "Statistics of extremes: Challenges and opportunities". Handbook of EVT and its Applications to Finance and Insurance (PDF). Hoboken, NJ: John Wiley's Sons. pp. 195–214. ISBN 978-1-118-65019-6.
  35. ^ Castro, D.; de Carvalho, M.; Wadsworth, J. (2018). "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets" (PDF). Annals of Applied Statistics. 12: 283–309. doi:10.1214/17-AOAS1089. S2CID 33350408.
  36. ^ Mhalla, L.; de Carvalho, M.; Chavez-Demoulin, V. (2019). "Regression type models for extremal dependence" (PDF). Scandinavian Journal of Statistics. 46 (4): 1141–1167. doi:10.1111/sjos.12388. S2CID 53570822.
  37. ^ Mhalla, L.; de Carvalho, M.; Chavez-Demoulin, V. (2018). "Local robust estimation of the Pickands dependence function". Annals of Statistics. 46 (6A): 2806–2843. doi:10.1214/17-AOS1640. S2CID 59467614.

Sources

Software

Read other articles:

Comics character ShadowmanArtwork from Shadowman #1 (November 2012) Art by Patrick ZircherPublication informationPublisherValiant ComicsFirst appearanceAs Jack Boniface:X-O Manowar #4 (May 1992)As Shadowman:Shadowman #1 (May 1992)Created byJim ShooterSteve EnglehartDavid LaphamIn-story informationAlter egoJack Dominique BonifaceTeam affiliationsSecret WeaponsPartnershipsArcher & ArmstrongNotable aliasesShadowmanAbilitiesWhen the Darque Power fills Jack Boniface, he has the following abili...

 

Гребля Табка Гребля Табка 35°52′20″ пн. ш. 38°34′00″ сх. д. / 35.87222222224977486° пн. ш. 38.5666666666947719477320788° сх. д. / 35.87222222224977486; 38.5666666666947719477320788Координати: 35°52′20″ пн. ш. 38°34′00″ сх. д. / 35.87222222224977486° пн. ш. 38.5666666666947719477320788° сх. д....

 

Ivan Petrella Ivan Petrella (* 8. November 1969), auch Iván Petrella, ist ein argentinischer Theologe und politischer Publizist. Er ist Professor am Department of Religious Studies der University of Miami. Inhaltsverzeichnis 1 Leben 2 Politisches und publizistisches Engagement 3 Werke (Auswahl) 4 Weblinks 5 Einzelnachweise Leben Petrella wuchs als Sohn des früheren Vizeaußenministers Argentiniens, Fernando Petrella, in einer katholischen Familie auf, betrachtet sich aber als Agnostiker. ...

جان جاك ريجيس دي كامباسيرس دوق بارما القنصل الثاني لفرنسا بجوار نابليون بونابرت وشارل-فرانسوا ليبرون في المنصب12 ديسمبر 1799 – 18 مايو 1804 معلومات شخصية الميلاد 18 أكتوبر 1753(1753-10-18)مونبلييه الوفاة 8 مارس 1824 (70 سنة)باريس مكان الدفن مقبرة بير لاشيز  مواطنة فرنسا  عضو في أكاديمي...

 

Wappen Deutschlandkarte 48.7512.966666666667316Koordinaten: 48° 45′ N, 12° 58′ O Basisdaten Bundesland: Bayern Regierungsbezirk: Niederbayern Landkreis: Deggendorf Verwaltungs­gemeinschaft: Moos Höhe: 316 m ü. NHN Fläche: 32,25 km2 Einwohner: 2348 (31. Dez. 2022)[1] Bevölkerungsdichte: 73 Einwohner je km2 Postleitzahl: 94554 Vorwahl: 09938 Kfz-Kennzeichen: DEG Gemeindeschlüssel: 09 2 71 135 Gemeindegl...

 

Куртина вікових дубів 46°29′13″ пн. ш. 32°08′31″ сх. д. / 46.48694500002777374° пн. ш. 32.14205200002777474° сх. д. / 46.48694500002777374; 32.14205200002777474Координати: 46°29′13″ пн. ш. 32°08′31″ сх. д. / 46.48694500002777374° пн. ш. 32.14205200002777474° сх. д. / 46.48694500002777374; 32...

مسييه 65معلومات عامةجزء من ثلاثية الأسد[1]عنقود العذراء المجري[1][CHM2007] HDC 626 (en) [1] رمز الفهرس M 65[1]PGC 34612[1][2]2MASX J11185595+1305319[1] المكتشف أو المخترع شارل مسييه[3] زمن الاكتشاف أو الاختراع 1 مارس 1780[4] الكوكبة الأسد[5] الانزياح الأحمر 0٫002692[6] ا...

 

Painting divided into multiple panels This article is about the art format. For the medieval document concerning lands, see Polyptych (document). Opened view of the Ghent Altarpiece: Jan van Eyck (1432). There is a different view when the wings are closed. Polyptych, made by the workshop of the Lübeck master Hermen Rode in 1478–1481, at the High Altar in St. Nicholas Church in Tallinn, Estonia A polyptych (/ˈpɒlɪptɪk/ POL-ip-tik; Greek: poly- many and ptychē fold) is a painting (usual...

 

American mathematician (1932–2016) Solomon W. GolombBornSolomon Wolf Golomb(1932-05-30)May 30, 1932Baltimore, Maryland, USDiedMay 1, 2016(2016-05-01) (aged 83)Los Angeles, California, USNationalityAmericanAlma materHarvard UniversityAwardsClaude E. Shannon Award (1985)IEEE Richard W. Hamming Medal (2000)National Medal of Science (2011)Scientific careerFieldsMathematics, engineeringInstitutionsUniversity of Southern CaliforniaDoctoral advisorDavid Widder Solomon Wolf Golomb (/ɡəl...

2013 aviation incident Merpati Nusantara Airlines Flight 6517Photo of Flight 6517 as it came to a rest on the runwayAccidentDate10 June 2013 (2013-06-10)SummaryCrashed on landing due to pilot errorSiteEl Tari Airport, Kupang, IndonesiaAircraftAircraft typeXian MA60OperatorMerpati Nusantara AirlinesIATA flight No.MZ6517ICAO flight No.MNA6517Call signMERPATI 6517RegistrationPK-MZOFlight originTurelelo Soa Airport, Bajawa, IndonesiaDestinationEl Tari Airport, Kupang, Indonesi...

 

Cognitive psychology Perception Visual perception Object recognition Face recognition Pattern recognition Attention Memory Aging and memory Emotional memory Learning Long-term memory Metacognition Language Metalanguage Thinking Cognition Concept Reasoning Decision making Problem solving Numerical cognition Numerosity adaptation effect Approximate number system Parallel individuation system vte Innate ability to detect differences in magnitude without counting The approximate number system (AN...

 

Tell al-RimahQattara/Karana (?)Shown within IraqLocationNineveh Province, IraqRegionMesopotamiaCoordinates36°15′25.51″N 42°26′57.61″E / 36.2570861°N 42.4493361°E / 36.2570861; 42.4493361TypetellSite notesExcavation dates1964–1971ArchaeologistsD. Oates, Theresa Howard Carter Tell al-Rimah (also Tell ar-Rimah) is an archaeological settlement mound, in Nineveh Province (Iraq) roughly 80 kilometres (50 mi) west of Mosul and ancient Nineveh in the Si...

English cricketer Jonathan TrottTrott playing for England in 2010Personal informationFull nameIan Jonathan Leonard TrottBorn (1981-04-22) 22 April 1981 (age 42)Cape Town, Cape Province, South AfricaNicknameTrotters, Booger, Leon[1]Height6 ft 0 in (1.83 m)BattingRight-handedBowlingRight-arm mediumRoleBatsmanRelationsKenny Jackson (half-brother)Tom Dollery (grandfather-in-law)International information National sideEngland (2007–2015)Test debut (cap 64...

 

The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Coconut Dracula – news · newspapers · books · scholar · JSTOR (April 2015...

 

Palumbo Shipyards in Malta Palumbo is an international shipyard group headquartered in Naples with seven shipyards across the Mediterranean (Ancona, Naples, Malta, Savona, Messina, Rijeka and Marseille) operating five brands: ISA Yachts, Columbus Yachts, Mondomarine,[1] Extra Yachts and Palumbo SY dedicated to refit. [2] In 2011 they launched the largest yacht ever built in Southern Italy.[3] In 2011, Palumbo improved its presence in Malta by signing a 30-year deal for...

East Ayrshire shown within Scotland A scheduled monument in Scotland is a nationally important archaeological site or monument which is given legal protection by being placed on a list (or schedule) maintained by Historic Environment Scotland. The aim of scheduling is to preserve the country's most significant sites and monuments as far as possible in the form in which they have been inherited.[1] The process of scheduling is governed by the Ancient Monuments and Archaeological Areas ...

 

Fossils and ancient bones used as medicine Dragon bones redirects here. For other uses, see Dragon bones (disambiguation). Long gulónggǔ written in seal scriptChinese nameTraditional Chinese龍骨Simplified Chinese龙骨Literal meaningdragon bonesTranscriptionsStandard MandarinHanyu PinyinlónggǔHakkaRomanizationliùng-kutYue: CantoneseJyutpinglung4gwat1Middle ChineseMiddle Chineseljowng kwotOld ChineseZhengzhang/*b·roŋ kuːd/Japanese nameKanji竜骨KanaりゅうこつTranscriptions...

 

دراسات إفريقيةصنف فرعي من دراسات المناطق يمتهنه Africanist (en) الموضوع إفريقيا تعديل - تعديل مصدري - تعديل ويكي بيانات أفريقيا الدراسات الأفريقية هي دراسة أفريقيا.وبالأخص مجتمعات وثقافات القارة بالمقابل لجولوجيتها وجغرافيتها وعلم الحيوان الخاص بها.. إلى أخره. ويضم المجال دراسة...

Ice hockey league in Slovakia For the basketball league, see Slovak Extraliga (basketball). Tipos ExtraligaCurrent season, competition or edition: 2023–24 Slovak Extraliga seasonFormerlyCzechoslovak First Ice Hockey LeagueSportIce hockeyFounded1993No. of teams12CountrySlovakiaMost recentchampion(s)HC Košice(9th title)Most titlesHC KošiceHC Slovan Bratislava(9 titles each)TV partner(s)TV JOJ (Slovakia)Sport1 (Czechia, Hungary, Slovakia)Relegation toSlovak 1. LigaRelatedcompetitionsSlovak 1...

 

كلية بارنارد   معلومات المؤسس آني ناثان ماير  التأسيس 1889 المنحة المالية 286.8 مليون دولار (2016) النوع خاصة الموقع الجغرافي إحداثيات 40°48′34″N 73°57′48″W / 40.809444444444°N 73.963333333333°W / 40.809444444444; -73.963333333333   الرمز البريدي 10027-6598[1]  المكان مانهاتن  البلد  الولا...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!