Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times.
A renewal process has asymptotic properties analogous to the strong law of large numbers and central limit theorem. The renewal function (expected number of arrivals) and reward function (expected reward value) are of key importance in renewal theory. The renewal function satisfies a recursive integral equation, the renewal equation. The key renewal equation gives the limiting value of the convolution of with a suitable non-negative function. The superposition of renewal processes can be studied as a special case of Markov renewal processes.
Applications include calculating the best strategy for replacing worn-out machinery in a factory and comparing the long-term benefits of different insurance policies. The inspection paradox relates to the fact that observing a renewal interval at time t gives an interval with average value larger than that of an average renewal interval.
Renewal processes
Introduction
The renewal process is a generalization of the Poisson process. In essence, the Poisson process is a continuous-time Markov process on the positive integers (usually starting at zero) which has independent exponentially distributed holding times at each integer before advancing to the next integer, . In a renewal process, the holding times need not have an exponential distribution; rather, the holding times may have any distribution on the positive numbers, so long as the holding times are independent and identically distributed (IID) and have finite mean.
represents the number of jumps that have occurred by time t, and is called a renewal process.
Interpretation
If one considers events occurring at random times, one may choose to think of the holding times as the random time elapsed between two consecutive events. For example, if the renewal process is modelling the numbers of breakdown of different machines, then the holding time represents the time between one machine breaking down before another one does.
The Poisson process is the unique renewal process with the Markov property,[1] as the exponential distribution is the unique continuous random variable with the property of memorylessness.
Renewal-reward processes
Let be a sequence of IID random variables (rewards) satisfying
Then the random variable
is called a renewal-reward process. Note that unlike the , each may take negative values as well as positive values.
The random variable depends on two sequences: the holding times and the rewards
These two sequences need not be independent. In particular, may be a function
of .
Interpretation
In the context of the above interpretation of the holding times as the time between successive malfunctions of a machine, the "rewards" (which in this case happen to be negative) may be viewed as the successive repair costs incurred as a result of the successive malfunctions.
An alternative analogy is that we have a magic goose which lays eggs at intervals (holding times) distributed as . Sometimes it lays golden eggs of random weight, and sometimes it lays toxic eggs (also of random weight) which require responsible (and costly) disposal. The "rewards" are the successive (random) financial losses/gains resulting from successive eggs (i = 1,2,3,...) and records the total financial "reward" at time t.
Renewal function
We define the renewal function as the expected value of the number of jumps observed up to some time :
To prove the elementary renewal theorem, it is sufficient to show that is uniformly integrable.
To do this, consider some truncated renewal process where the holding times are defined by where is a point such that which exists for all non-deterministic renewal processes. This new renewal process is an upper bound on and its renewals can only occur on the lattice . Furthermore, the number of renewals at each time is geometric with parameter . So we have
Elementary renewal theorem for renewal reward processes
We define the reward function:
The reward function satisfies
Renewal equation
The renewal function satisfies
where is the cumulative distribution function of and is the corresponding probability density function.
Considering for any gives as a special case the renewal theorem:[4]
as
The result can be proved using integral equations or by a coupling argument.[5] Though a special case of the key renewal theorem, it can be used to deduce the full theorem, by considering step functions and then increasing sequences of step functions.[3]
Asymptotic properties
Renewal processes and renewal-reward processes have properties analogous to the strong law of large numbers, which can be derived from the same theorem. If is a renewal process and is a renewal-reward process then:
A curious feature of renewal processes is that if we wait some predetermined time t and then observe how large the renewal interval containing t is, we should expect it to be typically larger than a renewal interval of average size.
Mathematically the inspection paradox states: for any t > 0 the renewal interval containing t is stochastically larger than the first renewal interval. That is, for all x > 0 and for all t > 0:
where FS is the cumulative distribution function of the IID holding times Si. A vivid example is the bus waiting time paradox: For a given random distribution of bus arrivals, the average rider at a bus stop observes more delays than the average operator of the buses.
The resolution of the paradox is that our sampled distribution at time t is size-biased (see sampling bias), in that the likelihood an interval is chosen is proportional to its size. However, a renewal interval of average size is not size-biased.
Proof
Observe that the last jump-time before t is ; and that the renewal interval containing t is . Then
since both and are greater than or equal to for all values of s.
Superposition
Unless the renewal process is a Poisson process, the superposition (sum) of two independent renewal processes is not a renewal process.[7] However, such processes can be described within a larger class of processes called the Markov-renewal processes.[8] However, the cumulative distribution function of the first inter-event time in the superposition process is given by[9]
where Rk(t) and αk > 0 are the CDF of the inter-event times and the arrival rate of process k.[10]
Example application
Eric the entrepreneur has n machines, each having an operational lifetime uniformly distributed between zero and two years. Eric may let each machine run until it fails with replacement cost €2600; alternatively he may replace a machine at any time while it is still functional at a cost of €200.
What is his optimal replacement policy?
Solution
The lifetime of the n machines can be modeled as n independent concurrent renewal-reward processes, so it is sufficient to consider the case n=1. Denote this process by . The successive lifetimes S of the replacement machines are independent and identically distributed, so the optimal policy is the same for all replacement machines in the process.
If Eric decides at the start of a machine's life to replace it at time 0 < t < 2 but the machine happens to fail before that time then the lifetime S of the machine is uniformly distributed on [0, t] and thus has expectation 0.5t. So the overall expected lifetime of the machine is:
and the expected cost W per machine is:
So by the strong law of large numbers, his long-term average cost per unit time is:
then differentiating with respect to t:
this implies that the turning points satisfy:
and thus
We take the only solution t in [0, 2]: t = 2/3. This is indeed a minimum (and not a maximum) since the cost per unit time tends to infinity as t tends to zero, meaning that the cost is decreasing as t increases, until the point 2/3 where it starts to increase.
^Lawrence, A. J. (1973). "Dependency of Intervals Between Events in Superposition Processes". Journal of the Royal Statistical Society. Series B (Methodological). 35 (2): 306–315. doi:10.1111/j.2517-6161.1973.tb00960.x. JSTOR2984914. formula 4.1
^Choungmo Fofack, Nicaise; Nain, Philippe; Neglia, Giovanni; Towsley, Don (6 March 2012). Analysis of TTL-based Cache Networks. Proceedings of 6th International Conference on Performance Evaluation Methodologies and Tools (report). Retrieved Nov 15, 2012.
San Eugenio F. C. Datos generalesNombre San Eugenio Fútbol ClubApodo(s) El Santo, La Blanca, El más querido, DecanoFundación 8 de mayo de 1908Presidente Nelson SouzaEntrenador Edgar Paz Lima MickyInstalacionesEstadio Estadio de San EugenioCapacidad 3000Ubicación 18 de julio esquina A. SaraviaInauguración 16 de abril de 2008Última temporadaLiga LFA(2018) 1º [editar datos en Wikidata] El San Eugenio Fútbol Club (conocido con el apodo de el Santo) es una institución de fútbol...
العلاقات النرويجية البالاوية النرويج بالاو النرويج بالاو تعديل مصدري - تعديل العلاقات النرويجية البالاوية هي العلاقات الثنائية التي تجمع بين النرويج وبالاو.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة ا
Бачан Країна Індонезія Координати: 0°39′42″ пд. ш. 127°17′44″ сх. д. / 0.661670000028° пд. ш. 127.29583000002777737° сх. д. / -0.661670000028; 127.29583000002777737 Протока Бачан (індон Selat Bacan) — протока в Індонезії в провінції Молуккські острови. Вона відокремлює острів Мандіол
جزيرة كوفياو جزيرة كوفياو ضمن جزر راجا أمبات معلومات جغرافية الموقع إندونيسيا، جنوب شرق آسيا الإحداثيات 1°10′55″S 129°50′56″E / 1.182053°S 129.848961°E / -1.182053; 129.848961[1] [2] [3] الأرخبيل جزر راجا أمبات المسطح المائي بحر هلماهرا أعلى ارتفاع (م) 47 متر الحك...
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (أبريل 2021) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فض...
Spanish footballer Not to be confused with Coke (footballer); Koke (footballer, born 1983); or Keko (footballer, born 1991). In this Spanish name, the first or paternal surname is Resurrección and the second or maternal family name is Merodio. Koke Koke with Atlético Madrid in 2019Personal informationFull name Jorge Resurrección Merodio[1]Date of birth (1992-01-08) 8 January 1992 (age 31)[2]Place of birth Madrid, SpainHeight 1.76 m (5 ft 9 in) ...
هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (نوفمبر 2020) باتمان: عودة الجوكرBatman Beyond: Return of the Joker (بالإنجليزية) معل...
Himno Nacional Argentino Español: Himno Portada de una partitura de finales del siglo XIX.Información generalHimno Nacional de ArgentinaNombre alternativo NacionalLetra Alejandro Vicente López y Planes, 1812Música Blas Parera, 1813Adoptado 1944Multimedia Himno Nacional Argentinonoicon¿Problemas al reproducir este archivo?[editar datos en Wikidata] El Himno Nacional Argentino es el himno oficial de Argentina, y uno de los símbolos patrios de ese país. Fue escrito po...
Cet article est une ébauche concernant un bateau ou un navire, la mer et le Royaume-Uni. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. RNLB J.C. Madge J.C. Madge (2010) Type Lifeboat non auto-redressable Classe Classe Liverpool Histoire A servi dans Royal National Lifeboat Institution (RNLI) Chantier naval Thames Ironworks and Shipbuilding CompanyLondres Fabrication bois Design bordage à clin Quille posée 19...
Gerhard Exner (* 6. Oktober 1941 in Stuhm, Westpreußen; † 6. Juni 2009 in Hamburg) war ein deutscher Chirurg. Inhaltsverzeichnis 1 Leben 2 Familie 3 Werke 4 Ehrungen 5 Siehe auch 6 Weblinks 7 Einzelnachweise Leben Grabstätte auf dem Friedhof Bergedorf Ab dem Sommersemester 1962 studierte Exner Medizin an der Philipps-Universität Marburg und der Johannes Gutenberg-Universität Mainz. In Mainz bestand er im Januar 1968 das Staatsexamen. Nach der zweijährigen Medizinalassistentenzeit wurde...
Municipality in Schleswig-Holstein, GermanyKolkerheideKolkhede Municipality FlagCoat of armsLocation of KolkerheideKolkhede within Nordfriesland district KolkerheideKolkhede Show map of GermanyKolkerheideKolkhede Show map of Schleswig-HolsteinCoordinates: 54°37′N 9°7′E / 54.617°N 9.117°E / 54.617; 9.117CountryGermanyStateSchleswig-HolsteinDistrictNordfriesland Municipal assoc.Mittleres Nordfriesland Government • MayorHans-Günther ThordsenArea ...
Retired Lieutenant General of the Philippine National Police In this Philippine name, the middle name or maternal family name is Dupa and the surname or paternal family name is Danao. Retired Police Lieutenant GeneralVicente D. Danao Jr.Danao in May 2022Commander of Area Police Command - Western Mindanao of the Philippine National PoliceIn officeAugust 08, 2022 – August 10, 2023PresidentBongbong MarcosPreceded byPMGen. Eden T. Ugale (OIC)Succeeded byPMGen. Jonnel C. Estomo...
لمعانٍ أخرى، طالع تاريخ الفلبين (توضيح). تاريخ الفلبين (1521-1898)معلومات عامةالمنطقة الفلبين التأثيراتفرع من تاريخ جنوب شرق آسيا تاريخ الفلبين بين عامي 900 و1521 تاريخ الفلبين (1898–1946) تعديل - تعديل مصدري - تعديل ويكي بيانات تاريخ الفلبين من عام 1521 حتى عام 1898هو الفترة التالية...
Wikipédia ne donne pas de conseils médicaux ou sanitaires. Cet article est susceptible de contenir des informations obsolètes ou inexactes. Seul un professionnel de la santé est apte à vous fournir un avis médical, et seules les autorités sanitaires de votre pays sont compétentes pour donner des consignes de santé publique relatives à la pandémie de Covid-19. Nombre de séquençages B.1.617 par pays au 21 avril 2021[1]. Legend: >100 séquences confirmées 2–99 séquences confi...
2008 studio album by Various artistsAmazon - Tribe - Songs for SurvivalStudio album by Various artistsReleased15 September 2008 (2008-09-15) (digital)13 October 2008 (CD)Recorded2005–2008GenreExperimentalLength88:35LabelKensaltown RecordsProducerMartin Terefe (Executive producer)Molly Oldfield (Executive producer)and others Bruce Parry Presents Amazon - Tribe - Songs for Survival is a double album released by Kensaltown Records in support of a tribal peoples charity. ...
Indonesian politician (1957–2023) Hasanuddin MuradMember of the South Kalimantan Regional People's Representative CouncilIn office9 September 2019 – 18 May 2023ConstituencySouth Kalimantan 3Regent of Barito KualaIn office3 November 2007 – 4 November 2017GovernorRudy Ariffin [id]Sahbirin NoorLieutenantSukardhiMakmun Kaderi [id]Preceded byEddy SukarmaSucceeded byNoormiliyani Aberani SulaimanMember of the People's Representative CouncilIn office1...
Japanese national university Akita University秋田大学TypeNationalEstablished1949PresidentFumio YamamotoStudents5,000LocationAkita, Akita, Japan39°43′41″N 140°08′02″E / 39.728056°N 140.133889°E / 39.728056; 140.133889Websitehttp://www.akita-u.ac.jp/english/Japan Akita Prefecture Akita University (秋田大学, Akita Daigaku) is a Japanese national university in Akita City, Japan. Established in 1949, it comprises four graduate schools and four undergradu...