Coefficient of variation

In probability theory and statistics, the coefficient of variation (CV), also known as normalized root-mean-square deviation (NRMSD), percent RMS, and relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is defined as the ratio of the standard deviation to the mean (or its absolute value, ), and often expressed as a percentage ("%RSD"). The CV or RSD is widely used in analytical chemistry to express the precision and repeatability of an assay. It is also commonly used in fields such as engineering or physics when doing quality assurance studies and ANOVA gauge R&R,[citation needed] by economists and investors in economic models, and in psychology/neuroscience.

Definition

The coefficient of variation (CV) is defined as the ratio of the standard deviation to the mean , [1]

It shows the extent of variability in relation to the mean of the population. The coefficient of variation should be computed only for data measured on scales that have a meaningful zero (ratio scale) and hence allow relative comparison of two measurements (i.e., division of one measurement by the other). The coefficient of variation may not have any meaning for data on an interval scale.[2] For example, most temperature scales (e.g., Celsius, Fahrenheit etc.) are interval scales with arbitrary zeros, so the computed coefficient of variation would be different depending on the scale used. On the other hand, Kelvin temperature has a meaningful zero, the complete absence of thermal energy, and thus is a ratio scale. In plain language, it is meaningful to say that 20 Kelvin is twice as hot as 10 Kelvin, but only in this scale with a true absolute zero. While a standard deviation (SD) can be measured in Kelvin, Celsius, or Fahrenheit, the value computed is only applicable to that scale. Only the Kelvin scale can be used to compute a valid coefficient of variability.

Measurements that are log-normally distributed exhibit stationary CV; in contrast, SD varies depending upon the expected value of measurements.

A more robust possibility is the quartile coefficient of dispersion, half the interquartile range divided by the average of the quartiles (the midhinge), .

In most cases, a CV is computed for a single independent variable (e.g., a single factory product) with numerous, repeated measures of a dependent variable (e.g., error in the production process). However, data that are linear or even logarithmically non-linear and include a continuous range for the independent variable with sparse measurements across each value (e.g., scatter-plot) may be amenable to single CV calculation using a maximum-likelihood estimation approach.[3]

Examples

In the examples below, we will take the values given as randomly chosen from a larger population of values.

  • The data set [100, 100, 100] has constant values. Its standard deviation is 0 and average is 100, giving the coefficient of variation as 0 / 100 = 0
  • The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1
  • The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18

In these examples, we will take the values given as the entire population of values.

  • The data set [100, 100, 100] has a population standard deviation of 0 and a coefficient of variation of 0 / 100 = 0
  • The data set [90, 100, 110] has a population standard deviation of 8.16 and a coefficient of variation of 8.16 / 100 = 0.0816
  • The data set [1, 5, 6, 8, 10, 40, 65, 88] has a population standard deviation of 30.8 and a coefficient of variation of 30.8 / 27.9 = 1.10

Estimation

When only a sample of data from a population is available, the population CV can be estimated using the ratio of the sample standard deviation to the sample mean :

But this estimator, when applied to a small or moderately sized sample, tends to be too low: it is a biased estimator. For normally distributed data, an unbiased estimator[4] for a sample of size n is:

Log-normal data

Many datasets follow an approximately log-normal distribution.[5] In such cases, a more accurate estimate, derived from the properties of the log-normal distribution,[6][7][8] is defined as:

where is the sample standard deviation of the data after a natural log transformation. (In the event that measurements are recorded using any other logarithmic base, b, their standard deviation is converted to base e using , and the formula for remains the same.[9]) This estimate is sometimes referred to as the "geometric CV" (GCV)[10][11] in order to distinguish it from the simple estimate above. However, "geometric coefficient of variation" has also been defined by Kirkwood[12] as:

This term was intended to be analogous to the coefficient of variation, for describing multiplicative variation in log-normal data, but this definition of GCV has no theoretical basis as an estimate of itself.

For many practical purposes (such as sample size determination and calculation of confidence intervals) it is which is of most use in the context of log-normally distributed data. If necessary, this can be derived from an estimate of or GCV by inverting the corresponding formula.

Comparison to standard deviation

Advantages

The coefficient of variation is useful because the standard deviation of data must always be understood in the context of the mean of the data. In contrast, the actual value of the CV is independent of the unit in which the measurement has been taken, so it is a dimensionless number. For comparison between data sets with different units or widely different means, one should use the coefficient of variation instead of the standard deviation.

Disadvantages

  • When the mean value is close to zero, the coefficient of variation will approach infinity and is therefore sensitive to small changes in the mean. This is often the case if the values do not originate from a ratio scale.
  • Unlike the standard deviation, it cannot be used directly to construct confidence intervals for the mean.

Applications

The coefficient of variation is also common in applied probability fields such as renewal theory, queueing theory, and reliability theory. In these fields, the exponential distribution is often more important than the normal distribution. The standard deviation of an exponential distribution is equal to its mean, so its coefficient of variation is equal to 1. Distributions with CV < 1 (such as an Erlang distribution) are considered low-variance, while those with CV > 1 (such as a hyper-exponential distribution) are considered high-variance[citation needed]. Some formulas in these fields are expressed using the squared coefficient of variation, often abbreviated SCV. In modeling, a variation of the CV is the CV(RMSD). Essentially the CV(RMSD) replaces the standard deviation term with the Root Mean Square Deviation (RMSD). While many natural processes indeed show a correlation between the average value and the amount of variation around it, accurate sensor devices need to be designed in such a way that the coefficient of variation is close to zero, i.e., yielding a constant absolute error over their working range.

In actuarial science, the CV is known as unitized risk.[13]

In industrial solids processing, CV is particularly important to measure the degree of homogeneity of a powder mixture. Comparing the calculated CV to a specification will allow to define if a sufficient degree of mixing has been reached.[14]

In fluid dynamics, the CV, also referred to as Percent RMS, %RMS, %RMS Uniformity, or Velocity RMS, is a useful determination of flow uniformity for industrial processes. The term is used widely in the design of pollution control equipment, such as electrostatic precipitators (ESPs),[15] selective catalytic reduction (SCR), scrubbers, and similar devices. The Institute of Clean Air Companies (ICAC) references RMS deviation of velocity in the design of fabric filters (ICAC document F-7).[16] The guiding principal is that many of these pollution control devices require "uniform flow" entering and through the control zone. This can be related to uniformity of velocity profile, temperature distribution, gas species (such as ammonia for an SCR, or activated carbon injection for mercury absorption), and other flow-related parameters. The Percent RMS also is used to assess flow uniformity in combustion systems, HVAC systems, ductwork, inlets to fans and filters, air handling units, etc. where performance of the equipment is influenced by the incoming flow distribution.

Laboratory measures of intra-assay and inter-assay CVs

CV measures are often used as quality controls for quantitative laboratory assays. While intra-assay and inter-assay CVs might be assumed to be calculated by simply averaging CV values across CV values for multiple samples within one assay or by averaging multiple inter-assay CV estimates, it has been suggested that these practices are incorrect and that a more complex computational process is required.[17] It has also been noted that CV values are not an ideal index of the certainty of a measurement when the number of replicates varies across samples − in this case standard error in percent is suggested to be superior.[18] If measurements do not have a natural zero point then the CV is not a valid measurement and alternative measures such as the intraclass correlation coefficient are recommended.[19]

As a measure of economic inequality

The coefficient of variation fulfills the requirements for a measure of economic inequality.[20][21][22] If x (with entries xi) is a list of the values of an economic indicator (e.g. wealth), with xi being the wealth of agent i, then the following requirements are met:

  • Anonymity – cv is independent of the ordering of the list x. This follows from the fact that the variance and mean are independent of the ordering of x.
  • Scale invariance: cv(x) = cvx) where α is a real number.[22]
  • Population independence – If {x,x} is the list x appended to itself, then cv({x,x}) = cv(x). This follows from the fact that the variance and mean both obey this principle.
  • Pigou–Dalton transfer principle: when wealth is transferred from a wealthier agent i to a poorer agent j (i.e. xi > xj) without altering their rank, then cv decreases and vice versa.[22]

cv assumes its minimum value of zero for complete equality (all xi are equal).[22] Its most notable drawback is that it is not bounded from above, so it cannot be normalized to be within a fixed range (e.g. like the Gini coefficient which is constrained to be between 0 and 1).[22] It is, however, more mathematically tractable than the Gini coefficient.

As a measure of standardisation of archaeological artefacts

Archaeologists often use CV values to compare the degree of standardisation of ancient artefacts.[23][24] Variation in CVs has been interpreted to indicate different cultural transmission contexts for the adoption of new technologies.[25] Coefficients of variation have also been used to investigate pottery standardisation relating to changes in social organisation.[26] Archaeologists also use several methods for comparing CV values, for example the modified signed-likelihood ratio (MSLR) test for equality of CVs.[27][28]

Examples of misuse

Comparing coefficients of variation between parameters using relative units can result in differences that may not be real. If we compare the same set of temperatures in Celsius and Fahrenheit (both relative units, where kelvin and Rankine scale are their associated absolute values):

Celsius: [0, 10, 20, 30, 40]

Fahrenheit: [32, 50, 68, 86, 104]

The sample standard deviations are 15.81 and 28.46, respectively. The CV of the first set is 15.81/20 = 79%. For the second set (which are the same temperatures) it is 28.46/68 = 42%.

If, for example, the data sets are temperature readings from two different sensors (a Celsius sensor and a Fahrenheit sensor) and you want to know which sensor is better by picking the one with the least variance, then you will be misled if you use CV. The problem here is that you have divided by a relative value rather than an absolute.

Comparing the same data set, now in absolute units:

Kelvin: [273.15, 283.15, 293.15, 303.15, 313.15]

Rankine: [491.67, 509.67, 527.67, 545.67, 563.67]

The sample standard deviations are still 15.81 and 28.46, respectively, because the standard deviation is not affected by a constant offset. The coefficients of variation, however, are now both equal to 5.39%.

Mathematically speaking, the coefficient of variation is not entirely linear. That is, for a random variable , the coefficient of variation of is equal to the coefficient of variation of only when . In the above example, Celsius can only be converted to Fahrenheit through a linear transformation of the form with , whereas Kelvins can be converted to Rankines through a transformation of the form .

Distribution

Provided that negative and small positive values of the sample mean occur with negligible frequency, the probability distribution of the coefficient of variation for a sample of size of i.i.d. normal random variables has been shown by Hendricks and Robey to be[29]

where the symbol indicates that the summation is over only even values of , i.e., if is odd, sum over even values of and if is even, sum only over odd values of .

This is useful, for instance, in the construction of hypothesis tests or confidence intervals. Statistical inference for the coefficient of variation in normally distributed data is often based on McKay's chi-square approximation for the coefficient of variation.[30][31][32][33][34][35]

Alternative

Liu (2012) reviews methods for the construction of a confidence interval for the coefficient of variation.[36] Notably, Lehmann (1986) derived the sampling distribution for the coefficient of variation using a non-central t-distribution to give an exact method for the construction of the CI.[37]

Similar ratios

Standardized moments are similar ratios, where is the kth moment about the mean, which are also dimensionless and scale invariant. The variance-to-mean ratio, , is another similar ratio, but is not dimensionless, and hence not scale invariant. See Normalization (statistics) for further ratios.

In signal processing, particularly image processing, the reciprocal ratio (or its square) is referred to as the signal-to-noise ratio in general and signal-to-noise ratio (imaging) in particular.

Other related ratios include:

  • Efficiency,
  • Standardized moment,
  • Variance-to-mean ratio (or relative variance),
  • Fano factor, (windowed VMR)

See also

References

  1. ^ Everitt, Brian (1998). The Cambridge Dictionary of Statistics. Cambridge, UK New York: Cambridge University Press. ISBN 978-0521593465.
  2. ^ "What is the difference between ordinal, interval and ratio variables? Why should I care?". GraphPad Software Inc. Archived from the original on 15 December 2008. Retrieved 22 February 2008.
  3. ^ Odic, Darko; Im, Hee Yeon; Eisinger, Robert; Ly, Ryan; Halberda, Justin (June 2016). "PsiMLE: A maximum-likelihood estimation approach to estimating psychophysical scaling and variability more reliably, efficiently, and flexibly". Behavior Research Methods. 48 (2): 445–462. doi:10.3758/s13428-015-0600-5. ISSN 1554-3528. PMID 25987306.
  4. ^ Sokal RR & Rohlf FJ. Biometry (3rd Ed). New York: Freeman, 1995. p. 58. ISBN 0-7167-2411-1
  5. ^ Limpert, Eckhard; Stahel, Werner A.; Abbt, Markus (2001). "Log-normal Distributions across the Sciences: Keys and Clues". BioScience. 51 (5): 341–352. doi:10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2.
  6. ^ Koopmans, L. H.; Owen, D. B.; Rosenblatt, J. I. (1964). "Confidence intervals for the coefficient of variation for the normal and log normal distributions". Biometrika. 51 (1–2): 25–32. doi:10.1093/biomet/51.1-2.25.
  7. ^ Diletti, E; Hauschke, D; Steinijans, VW (1992). "Sample size determination for bioequivalence assessment by means of confidence intervals". International Journal of Clinical Pharmacology, Therapy, and Toxicology. 30 (Suppl 1): S51–8. PMID 1601532.
  8. ^ Julious, Steven A.; Debarnot, Camille A. M. (2000). "Why Are Pharmacokinetic Data Summarized by Arithmetic Means?". Journal of Biopharmaceutical Statistics. 10 (1): 55–71. doi:10.1081/BIP-100101013. PMID 10709801. S2CID 2805094.
  9. ^ Reed, JF; Lynn, F; Meade, BD (2002). "Use of Coefficient of Variation in Assessing Variability of Quantitative Assays". Clin Diagn Lab Immunol. 9 (6): 1235–1239. doi:10.1128/CDLI.9.6.1235-1239.2002. PMC 130103. PMID 12414755.
  10. ^ Sawant, S.; Mohan, N. (2011) "FAQ: Issues with Efficacy Analysis of Clinical Trial Data Using SAS" Archived 24 August 2011 at the Wayback Machine, PharmaSUG2011, Paper PO08
  11. ^ Schiff, MH; et al. (2014). "Head-to-head, randomised, crossover study of oral versus subcutaneous methotrexate in patients with rheumatoid arthritis: drug-exposure limitations of oral methotrexate at doses >=15 mg may be overcome with subcutaneous administration". Ann Rheum Dis. 73 (8): 1–3. doi:10.1136/annrheumdis-2014-205228. PMC 4112421. PMID 24728329.
  12. ^ Kirkwood, TBL (1979). "Geometric means and measures of dispersion". Biometrics. 35 (4): 908–9. JSTOR 2530139.
  13. ^ Broverman, Samuel A. (2001). Actex study manual, Course 1, Examination of the Society of Actuaries, Exam 1 of the Casualty Actuarial Society (2001 ed.). Winsted, CT: Actex Publications. p. 104. ISBN 9781566983969. Retrieved 7 June 2014.
  14. ^ "Measuring Degree of Mixing – Homogeneity of powder mix - Mixture quality - PowderProcess.net". www.powderprocess.net. Archived from the original on 14 November 2017. Retrieved 2 May 2018.
  15. ^ Banka, A; Dumont, B; Franklin, J; Klemm, G; Mudry, R (2018). "Improved Methodology for Accurate CFD and Physical Modeling of ESPs" (PDF). International Society of Electrostatic Precipitation (ISESP) Conference 2018.
  16. ^ "F7 - Fabric Filter Gas Flow Model Studies" (PDF). Institute of Clean Air Companies (ICAC). 1996.
  17. ^ Rodbard, D (October 1974). "Statistical quality control and routine data processing for radioimmunoassays and immunoradiometric assays". Clinical Chemistry. 20 (10): 1255–70. doi:10.1093/clinchem/20.10.1255. PMID 4370388.
  18. ^ Eisenberg, Dan (2015). "Improving qPCR telomere length assays: Controlling for well position effects increases statistical power". American Journal of Human Biology. 27 (4): 570–5. doi:10.1002/ajhb.22690. PMC 4478151. PMID 25757675.
  19. ^ Eisenberg, Dan T. A. (30 August 2016). "Telomere length measurement validity: the coefficient of variation is invalid and cannot be used to compare quantitative polymerase chain reaction and Southern blot telomere length measurement technique". International Journal of Epidemiology. 45 (4): 1295–1298. doi:10.1093/ije/dyw191. ISSN 0300-5771. PMID 27581804.
  20. ^ Champernowne, D. G.; Cowell, F. A. (1999). Economic Inequality and Income Distribution. Cambridge University Press.
  21. ^ Campano, F.; Salvatore, D. (2006). Income distribution. Oxford University Press.
  22. ^ a b c d e Bellu, Lorenzo Giovanni; Liberati, Paolo (2006). "Policy Impacts on Inequality – Simple Inequality Measures" (PDF). EASYPol, Analytical tools. Policy Support Service, Policy Assistance Division, FAO. Archived (PDF) from the original on 5 August 2016. Retrieved 13 June 2016.
  23. ^ Eerkens, Jelmer W.; Bettinger, Robert L. (July 2001). "Techniques for Assessing Standardization in Artifact Assemblages: Can We Scale Material Variability?". American Antiquity. 66 (3): 493–504. doi:10.2307/2694247. JSTOR 2694247. S2CID 163507589.
  24. ^ Roux, Valentine (2003). "Ceramic Standardization and Intensity of Production: Quantifying Degrees of Specialization". American Antiquity. 68 (4): 768–782. doi:10.2307/3557072. ISSN 0002-7316. JSTOR 3557072. S2CID 147444325.
  25. ^ Bettinger, Robert L.; Eerkens, Jelmer (April 1999). "Point Typologies, Cultural Transmission, and the Spread of Bow-and-Arrow Technology in the Prehistoric Great Basin". American Antiquity. 64 (2): 231–242. doi:10.2307/2694276. JSTOR 2694276. S2CID 163198451.
  26. ^ Wang, Li-Ying; Marwick, Ben (October 2020). "Standardization of ceramic shape: A case study of Iron Age pottery from northeastern Taiwan". Journal of Archaeological Science: Reports. 33: 102554. Bibcode:2020JArSR..33j2554W. doi:10.1016/j.jasrep.2020.102554. S2CID 224904703.
  27. ^ Krishnamoorthy, K.; Lee, Meesook (February 2014). "Improved tests for the equality of normal coefficients of variation". Computational Statistics. 29 (1–2): 215–232. doi:10.1007/s00180-013-0445-2. S2CID 120898013.
  28. ^ Marwick, Ben; Krishnamoorthy, K (2019). cvequality: Tests for the equality of coefficients of variation from multiple groups. R package version 0.2.0.
  29. ^ Hendricks, Walter A.; Robey, Kate W. (1936). "The Sampling Distribution of the Coefficient of Variation". The Annals of Mathematical Statistics. 7 (3): 129–32. doi:10.1214/aoms/1177732503. JSTOR 2957564.
  30. ^ Iglevicz, Boris; Myers, Raymond (1970). "Comparisons of approximations to the percentage points of the sample coefficient of variation". Technometrics. 12 (1): 166–169. doi:10.2307/1267363. JSTOR 1267363.
  31. ^ Bennett, B. M. (1976). "On an Approximate Test for Homogeneity of Coefficients of Variation". Contribution to Applied Statistics. Experientia Supplementum. Vol. 22. pp. 169–171. doi:10.1007/978-3-0348-5513-6_16. ISBN 978-3-0348-5515-0.
  32. ^ Vangel, Mark G. (1996). "Confidence intervals for a normal coefficient of variation". The American Statistician. 50 (1): 21–26. doi:10.1080/00031305.1996.10473537. JSTOR 2685039..
  33. ^ Feltz, Carol J; Miller, G. Edward (1996). "An asymptotic test for the equality of coefficients of variation from k populations". Statistics in Medicine. 15 (6): 647. doi:10.1002/(SICI)1097-0258(19960330)15:6<647::AID-SIM184>3.0.CO;2-P. PMID 8731006.
  34. ^ Forkman, Johannes (2009). "Estimator and tests for common coefficients of variation in normal distributions" (PDF). Communications in Statistics – Theory and Methods. 38 (2): 21–26. doi:10.1080/03610920802187448. S2CID 29168286. Archived (PDF) from the original on 6 December 2013. Retrieved 23 September 2013.
  35. ^ Krishnamoorthy, K; Lee, Meesook (2013). "Improved tests for the equality of normal coefficients of variation". Computational Statistics. 29 (1–2): 215–232. doi:10.1007/s00180-013-0445-2. S2CID 120898013.
  36. ^ Liu, Shuang (2012). Confidence Interval Estimation for Coefficient of Variation (Thesis). Georgia State University. p.3. Archived from the original on 1 March 2014. Retrieved 25 February 2014.
  37. ^ Lehmann, E. L. (1986). Testing Statistical Hypothesis. 2nd ed. New York: Wiley.
  • cvequality: R package to test for significant differences between multiple coefficients of variation

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أغسطس 2023) هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تق

 

Марк Гордеоній ФлакНародився 14(0014)Castra NovaesiumdПомер 70Новезій·вбивствоКраїна Стародавній РимДіяльність політик, військовий діячПосада консул-суффектТермін 47 рікПопередник Луцій ВітеллійНаступник Тит Флавій Сабін Марк Гордеоній Флак (лат. Marcus Hordeonius Flaccus; 14 — 70) — держ

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Duke University Hospital – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this template message) Hospital in North Carolina, United StatesDuke University HospitalDuke University Health SystemGeographyLocationDurham, No...

Arjan Kumar SikriHakim Mahkamah Agung IndiaMasa jabatan12-04-2013–06-03-2019 Informasi pribadiKebangsaanIndiaProfesiHakimSunting kotak info • L • B Arjan Kumar Sikri adalah hakim Mahkamah Agung India. Ia mulai menjabat sebagai hakim di mahkamah tersebut pada 12-04-2013. Masa baktinya sebagai hakim berakhir pada 06-03-2019.[1] Referensi ^ Daftar Hakim di Mahkamah Agung India. Mahkamah Agung India. Diakses tanggal 10 Juni 2021.  Artikel bertopik biografi India ini a...

 

Eurovision Song Contest 2022Country  SwitzerlandNational selectionSelection processInternal selectionSelection date(s)8 March 2022Selected entrantMarius BearSelected songBoys Do CrySelected songwriter(s)Marius HügliMartin GallopFinals performanceSemi-final resultQualified (9th, 118 points)Final result17th, 78 pointsSwitzerland in the Eurovision Song Contest ◄2021 • 2022 • 2023► Switzerland participated in the Eurovision Song Contest 2022 i...

 

Die Universitätsbibliothek Heidelberg, das Wahrzeichen der Ruprecht-Karls-Universität Heidelberg. Die RKU wurde 1386 gegründet und ist damit die erste Universität, die im heutigen Deutschland den Lehrbetrieb aufnahm sowie die älteste durchgängig bestehende Universität in der Bundesrepublik Deutschland. Erfurter Campus der IU Internationale Hochschule, Deutschlands größter Fachhochschule Fernuniversität in Hagen – die größte Universität Deutschlands Die Liste der Hochschule...

Process by which an object moves, through an atmosphere or beyond it For other uses, see Flight (disambiguation). Natural flight by a brown pelican Human-engineered flight: a Royal Jordanian Airlines Boeing 787 Flight or flying is the process by which an object moves through a space without contacting any planetary surface, either within an atmosphere (i.e. air flight or aviation) or through the vacuum of outer space (i.e. spaceflight). This can be achieved by generating aerodynamic lift asso...

 

Italian banking group Intesa Sanpaolo S.p.A.Headquarters building in TurinTypePublicTraded asBIT: ISPFTSE MIB ComponentISINIT0000072618IndustryFinancial servicesPredecessorsBanca IntesaSanpaolo IMIFoundedJanuary 2007; 16 years ago (2007-01) (merger)HeadquartersGrattacielo Intesa Sanpaolo, Turin, ItalyNumber of locations 4,565 branches 3,611 in Italy 954 abroadAreas servedItalyCentral-Eastern EuropeEgyptKey peopleGian Maria Gros-Pietro(Chairman)Carlo Messina(CEO)Pro...

 

Sign in German stating that sure-footedness (Trittsicherheit) is needed on this hiking trail Sure-footedness is the ability, especially when hiking or mountain climbing, to negotiate difficult or rough terrain safely. Such situations place demands on a person's coordination and reserves of strength as well as requiring sufficient appreciation of the terrain. A person who is sure-footed is thus unlikely to slip or stumble,[1] and will have a good head for heights when required. On many...

NFL cheerleader squad Philadelphia Eagles CheerleadersThe Philadelphia Eagles Cheerleaders during a game in 2021Formation1948; 75 years ago (1948) (debut)Membership 26DirectorBarbara ZaunAffiliationsPhiladelphia EaglesWebsiteOfficial websiteFormerly called 1948–1970s Eaglettes 1970s–1980s Liberty Belles 1980s–present Philadelphia Eagles Cheerleaders The Philadelphia Eagles Cheerleaders are the cheerleading squad of the Philadelphia Eagles, who plays in the ...

 

Belgian painter Self-portrait, drawing by Albert Van Dyck, 1929, Print cabinet of the Royal Library of Belgium, F 7629 Albert Van Dyck (25 May 1902 – 27 March 1951) was a Belgian painter.[1] He painted genre works, figures, portraits, and still lifes. Van Dyck was also an engraver, as well as a watercolorist.[2] Biography Albert Van Dyck was born in Turnhout, Antwerp Province, on 25 May 1902.[1] When Van Dyck started out as an artist, Vlaamse expressionisme, Flemish ...

 

Three states of the ancient Sinhalese kingdom The Principality of Ruhuna, also referred to as the Kingdom of Ruhuna, is a region of present-day Southern and Eastern Sri Lanka. It was the center of a flourishing civilisation and the cultural and economic centres of ancient Sri Lanka. Magama, Tissamaharama and Mahanagakula (now called as Ambalantota) were established here.[1][2] The kingdom of Ruhuna was an important state in Sinhalese history as it was known for several rebelli...

River in France VologneThe Vologne at BeauménilShow map of FranceShow map of Grand EstLocationCountryFrancePhysical characteristicsSource  • locationVosges Mountains MouthMoselle • coordinates48°6′50″N 6°34′1″E / 48.11389°N 6.56694°E / 48.11389; 6.56694Length50 km (31 mi)Basin size369 km2 (142 sq mi)Discharge  • average9.70 m3/s (343 cu ft/s) Basin f...

 

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (September 2019) Free Spirit Airlines IATA ICAO Callsign FS FSA Free Spirit Founded2012Commenced operations30 April 2015HubsEssendon AirportFleet size0Destinations2Parent companyWest Wing AviationHeadquartersEssendon Fields, Victoria, AustraliaKey peopleRoman Badov, FounderWebsitefreespiritairlines.com.au Free Spirit Airlines is a Melbo...

 

Telugu cinema (Tollywood) 1930s 1940s 1941 1942 1943 19441945 1946 1947 1948 1949 1950 1950s 1951 1952 1953 19541955 1956 1957 1958 1959 1960 1960s 1961 1962 1963 19641965 1966 1967 1968 1969 1970 1970s 1971 1972 1973 19741975 1976 1977 1978 1979 1980 1980s 1981 1982 1983 19841985 1986 1987 1988 1989 1990 1990s 1991 1992 1993 19941995 1996 1997 1998 1999 2000 2000s 2001 2002 2003 20042005 2006 2007 2008 2009 2010 2010s 2011 2012 2013 20142015 2016 2017 2018 2019 2020 2020s 2021 2022 2023 2024...

American basketball player Kodi JusticeJustice in 2019No. 21 – Śląsk WrocławPositionShooting guardLeaguePolish Basketball LeagueEuroCupPersonal informationBorn (1995-04-03) April 3, 1995 (age 28)Mesa, ArizonaNationalityAmericanListed height6 ft 6 in (1.98 m)Listed weight192 lb (87 kg)Career informationHigh schoolDobson(Mesa, Arizona)CollegeArizona State (2014–2018)NBA draft2018: undraftedPlaying career2018–presentCareer history2018–2019Parma201...

 

Association football club in Northern Ireland Football clubCoagh UnitedFull nameCoagh United Football ClubFounded1970GroundHagan ParkCapacity1,000 (150 seated)ChairmanBrian DallasLeagueNIFL Premier Intermediate League Home colours Coagh United Football Club is an intermediate, Northern Irish football club playing in the NIFL Premier Intermediate League. The club, founded in 1970, hails from Coagh, near Cookstown, County Tyrone. They play their home games at Hagan Park. In 2016 the club was re...

 

2023 Indian film by P. Vasu Chandramukhi 2Theatrical release posterDirected byP. VasuWritten byP. VasuProduced bySubaskaran AllirajahStarringRaghava LawrenceKangana RanautLakshmi Menon VadiveluMahima NambiarCinematographyR. D. RajasekharEdited byAnthonyMusic byM. M. KeeravaniProductioncompanyLyca ProductionsDistributed byAA FilmsRelease date 28 September 2023 (2023-09-28) Running time157 minutes[1]CountryIndiaLanguageTamilBudget₹60–₹65 crore[2][3]B...

Season of television series Battle of the BladesSeason 4Celebrity winnerScott ThorntonProfessional winnerAmanda Evora Country of originCanadaNo. of episodes9ReleaseOriginal networkCBCOriginal releaseSeptember 22 (2013-09-22) –November 17, 2013 (2013-11-17)Season chronology← PreviousSeason 3Next →Season 5 The fourth season of Battle of the Blades premiered on September 22, 2013, as a part of CBC's fall line-up after a two-year hiatus.[1] Like previous sea...

 

Genus of flowering plants Box (plant) redirects here. For other species called box, see Eucalyptus. Boxtree redirects here. For the publisher, see Macmillan Publishers. Boxwood redirects here. For other uses, see Boxwood (disambiguation). For the asteroid, see 8852 Buxus. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Buxus – news...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!