Time-translation symmetry

Time-translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time-translation symmetry is the law that the laws of physics are unchanged (i.e. invariant) under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy.[1] In mathematics, the set of all time translations on a given system form a Lie group.

There are many symmetries in nature besides time translation, such as spatial translation or rotational symmetries. These symmetries can be broken and explain diverse phenomena such as crystals, superconductivity, and the Higgs mechanism.[2] However, it was thought until very recently that time-translation symmetry could not be broken.[3] Time crystals, a state of matter first observed in 2017, break time-translation symmetry.[4]

Overview

Symmetries are of prime importance in physics and are closely related to the hypothesis that certain physical quantities are only relative and unobservable.[5] Symmetries apply to the equations that govern the physical laws (e.g. to a Hamiltonian or Lagrangian) rather than the initial conditions, values or magnitudes of the equations themselves and state that the laws remain unchanged under a transformation.[1] If a symmetry is preserved under a transformation it is said to be invariant. Symmetries in nature lead directly to conservation laws, something which is precisely formulated by Noether's theorem.[6]

Symmetries in physics[5]
Symmetry Transformation Unobservable Conservation law
Space-translation absolute position in space momentum
Time-translation absolute time energy
Rotation absolute direction in space angular momentum
Space inversion absolute left or right parity
Time-reversal absolute sign of time Kramers degeneracy
Sign reversion of charge absolute sign of electric charge charge conjugation
Particle substitution distinguishability of identical particles Bose or Fermi statistics
Gauge transformation relative phase between different normal states particle number

Newtonian mechanics

To formally describe time-translation symmetry we say the equations, or laws, that describe a system at times and are the same for any value of and .

For example, considering Newton's equation:

One finds for its solutions the combination:

does not depend on the variable . Of course, this quantity describes the total energy whose conservation is due to the time-translation invariance of the equation of motion. By studying the composition of symmetry transformations, e.g. of geometric objects, one reaches the conclusion that they form a group and, more specifically, a Lie transformation group if one considers continuous, finite symmetry transformations. Different symmetries form different groups with different geometries. Time independent Hamiltonian systems form a group of time translations that is described by the non-compact, abelian, Lie group . TTS is therefore a dynamical or Hamiltonian dependent symmetry rather than a kinematical symmetry which would be the same for the entire set of Hamiltonians at issue. Other examples can be seen in the study of time evolution equations of classical and quantum physics.

Many differential equations describing time evolution equations are expressions of invariants associated to some Lie group and the theory of these groups provides a unifying viewpoint for the study of all special functions and all their properties. In fact, Sophus Lie invented the theory of Lie groups when studying the symmetries of differential equations. The integration of a (partial) differential equation by the method of separation of variables or by Lie algebraic methods is intimately connected with the existence of symmetries. For example, the exact solubility of the Schrödinger equation in quantum mechanics can be traced back to the underlying invariances. In the latter case, the investigation of symmetries allows for an interpretation of the degeneracies, where different configurations to have the same energy, which generally occur in the energy spectrum of quantum systems. Continuous symmetries in physics are often formulated in terms of infinitesimal rather than finite transformations, i.e. one considers the Lie algebra rather than the Lie group of transformations

Quantum mechanics

The invariance of a Hamiltonian of an isolated system under time translation implies its energy does not change with the passage of time. Conservation of energy implies, according to the Heisenberg equations of motion, that .

or:

Where is the time-translation operator which implies invariance of the Hamiltonian under the time-translation operation and leads to the conservation of energy.

Nonlinear systems

In many nonlinear field theories like general relativity or Yang–Mills theories, the basic field equations are highly nonlinear and exact solutions are only known for ‘sufficiently symmetric’ distributions of matter (e.g. rotationally or axially symmetric configurations). Time-translation symmetry is guaranteed only in spacetimes where the metric is static: that is, where there is a coordinate system in which the metric coefficients contain no time variable. Many general relativity systems are not static in any frame of reference so no conserved energy can be defined.

Time-translation symmetry breaking (TTSB)

Time crystals, a state of matter first observed in 2017, break discrete time-translation symmetry.[4]

See also

References

  1. ^ a b Wilczek, Frank (16 July 2015). "3". A Beautiful Question: Finding Nature's Deep Design. Penguin Books Limited. ISBN 978-1-84614-702-9.
  2. ^ Richerme, Phil (18 January 2017). "Viewpoint: How to Create a Time Crystal". Physics. 10. APS Physics: 5. Bibcode:2017PhyOJ..10....5R. doi:10.1103/Physics.10.5. Archived from the original on 2 February 2017.
  3. ^ Else, Dominic V.; Bauer, Bela; Nayak, Chetan (2016). "Floquet Time Crystals". Physical Review Letters. 117 (9): 090402. arXiv:1603.08001. Bibcode:2016PhRvL.117i0402E. doi:10.1103/PhysRevLett.117.090402. ISSN 0031-9007. PMID 27610834. S2CID 1652633.
  4. ^ a b Gibney, Elizabeth (2017). "The quest to crystallize time". Nature. 543 (7644): 164–166. Bibcode:2017Natur.543..164G. doi:10.1038/543164a. ISSN 0028-0836. PMID 28277535. S2CID 4460265.
  5. ^ a b Feng, Duan; Jin, Guojun (2005). Introduction to Condensed Matter Physics. Singapore: World Scientific. p. 18. ISBN 978-981-238-711-0.
  6. ^ Cao, Tian Yu (25 March 2004). Conceptual Foundations of Quantum Field Theory. Cambridge: Cambridge University Press. ISBN 978-0-521-60272-3.

Read other articles:

Procesión de rey Suddhodana desde Kapilavastu, procediendo a reunirse con su hijo, el Buda caminando en el aire (la cabeza levantada en el fondo del tablero), y para darle un árbol Banyan (esquina izquierda inferior). El sueño de Maya en la parte superior del tablero es un marcador seguro de Kapilavastu. Sanchi.[1]​ El sueño de Maya de un elefante durante su concepción del Buda, un identificador de la ciudad de Kapilavastu. Kapilavastu fue una antigua ciudad, que fue la capital de ...

 

Forum Enger, 1985 Lampshade (Dk/Sw) im Forum Bielefeld, 6. März 2009 Das Forum Enger war ein Musikclub, der in der ostwestfälischen Stadt Enger in Nordrhein-Westfalen von November 1974 bis Silvester 1998 existierte und zahlreichen jungen Bands eine Auftrittsmöglichkeit gab. Inhaltsverzeichnis 1 Geschichte 1.1 Aufnahme von Musikproduktionen 2 Weblinks 3 Einzelnachweise Geschichte Gegründet wurde das Forum Enger als Jazzclub im November 1974 in den Kellerräumlichkeiten der alten Zigarrenfa...

 

Peixe-leão fotografado no Mar Vermelho Peixe-leão, peixe-peru, peixe-dragão, peixe-escorpião e peixe-pedra são alguns nomes vulgares para uma grande variedade de peixes marinhos venenosos dos gêneros Pterois, Parapterois, Brachypterois, Ebosia ou Dendrochirus, pertencentes à família Scorpaenidae.[1] Um dos seus representantes mais conhecidos é o peixe-leão-vermelho. Os peixes-leões são predadores vorazes. Quando estão caçando, encurralam as presas com seus espinhos e,[2] num mov...

Thomas Sørensen Informasi pribadiNama lengkap Thomas Løvendahl SørensenTanggal lahir 12 Juni 1976 (umur 47)Tempat lahir Fredericia, DenmarkTinggi 196 m (643 ft 1 in) [1]Posisi bermain Penjaga GawangInformasi klubKlub saat ini Melbourne CityNomor 1Karier junior Erritsø Assens Odense BKKarier senior*Tahun Tim Tampil (Gol)1993–1998 Odense BK 0 (0)1995–1997 → Vejle (pinjam) 6 (0)1997–1998 → Svendborg (pinjam) 45 (0)1998–2003 Sunderland 171 (0)2003–200...

 

Serie 5000 del Metro Municipal de Nagoya 名古屋市交通局5000形 Datos generalesFabricante Año fabricación 1980–1990Unidades fabricadas 138 vehículos (23 formaciones)Potencia 1,520kWMotores 4 de 380 kW por ChopperCaracterísticas técnicasAncho de vía 1435 mmComposición Rc+4M+RcVelocidad máxima 65 km/hLongitud 15.58 mAnchura 2.50 mAltura 3.44 mPeso 22 t Rc 24.2t MA bordoNº plazas 680EquipamientoProtección del tren CBTC[editar datos en Wikidata] La Serie 5000 del Metro...

 

Non-profit, international day school in MoscowAnglo-American School of Moscow (AAS Moscow)Англо-американская школа - МоскваAddress1 Beregovaya Street, 125367 Moscow, RussiaMoscowCoordinates55°49′37″N 37°27′41″E / 55.8270°N 37.4615°E / 55.8270; 37.4615InformationOther nameAAS MoscowTypeNon-profit, International day schoolEstablished1949ClosedMay 12, 2023DirectorRhonda NorrisEnrollment250 students (2022-23)Area6 hectaresMascotPengu...

Conference of the National Basketball Association This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Eastern Conference NBA – news · newspapers · books · scholar · JSTOR (July 2016) (Learn how and when to remove this template message) Eastern ConferenceFormerlyEastern DivisionLeagueNational Basketball Asso...

 

Maison Marcel DepelsenaireLa façade principale vers le boulevard AudentPrésentationArchitecte Marcel DepelsenaireConstruction 1923Commanditaire Marcel DepelsenaireLocalisationPays BelgiqueRégion  Région wallonneProvince  Province de HainautCommune  CharleroiAdresse boulevard Audent, 406000 CharleroiCoordonnées 50° 24′ 33″ N, 4° 26′ 47″ Emodifier - modifier le code - modifier Wikidata La maison personnelle de l'architecte Marcel Depel...

 

Not to be confused with Vijainagar in Rajasthan Upazila in Chittagong Division, BangladeshBijoynagar বিজয়নগরUpazilaCoordinates: 24°1.3′N 91°16.8′E / 24.0217°N 91.2800°E / 24.0217; 91.2800Country BangladeshDivisionChittagong DivisionDistrictBrahmanbaria DistrictArea • Total221.17 km2 (85.39 sq mi)Population (2011) • Total257,247 • Density1,200/km2 (3,000/sq mi)Time zoneUTC+6 (BST)...

1940 Marathi language film This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sant Dnyaneshwar film – news · newspapers · books · scholar · JSTOR (August 2017) (Learn how and when to remove this template message) Sant DnyaneshwarVCD CoverDirected byVishnupant Govind DamleSheikh FattelalWritten byAnand Kuma...

 

The Walkman S Series is a line of portable media players designed and developed by Sony, currently marketed in Japan. The S Series made their debut in the fall of 2006 and later were launched in other regions. Although the first generation of models had generic displays, all next generations of players of the S Series had TFT color displays and supported video playback. They were slightly cheaper than the flagship A Series but had more features than the E Series.[1][2] The S S...

 

Albanian founding father (1876–1950) Spiridon IloBorn(1876-09-30)30 September 1876Korçë, Manastir Vilayet, Ottoman EmpireDiedNovember 7, 1950(1950-11-07) (aged 74)Korçë, AlbaniaOther namesSpiridhon Ilo, Spiro IloKnown forAlbanian Declaration of IndependenceAlbanian National Anthem first recordingAlbanian Colony of Romania Spiridon Ilo (30 September 1876 – 7 November 1950) was one of the founding fathers of Albania as a signatory of the Albanian Declaration of Indepe...

Two-gospel hypothesisGriesbach hypothesisTheory InformationOrderMatt Luke MarkAdditional SourcesNo additional sourcesGospels' SourcesMarkMatt, LukeLukeMattTheory HistoryOriginatorHenry OwenOriginating WorkOn Dispensing with QOrigination Date1764ProponentsJohann Jakob Griesbach Friedrich Andreas Stroth William R. Farmer Hypothesis that the synoptic gospels were authored in the order of Matthew, Luke, then Mark Not to be confused with Two-source hypothesis.The two-gospel hypothesis or Griesbach...

 

Aviation accident Dirgantara Air Service Flight 3130An Indonesian registered Britten Norman Islander, similar to the crashed aircraftAccidentDate18 November 2000 (2000-11-18)SummaryLoss of control due to overloading and pilot errorSiteNear Datah Dawai Airport, Long Panhangai District, Malinau Regency, East Kalimantan, IndonesiaAircraftAircraft typeBritten Norman BN-2 IslanderOperatorDirgantara Air ServiceRegistrationPK-VIYFlight originDatah Dawai Airport, Mahakam Ulu Regen...

 

Основная статья: Промышленность Вьетнама Vinfast Lux A2.0 VinFast LUX SUV V8 Автомобильная промышленность Вьетнама является быстрорастущим сектором, в основном зависящим от продаж на внутреннем рынке. Все выпускаемые в настоящее время модели разработаны за границей иностранными бре...

American software developer For the British chemist, see Philip A. Gale. Philip GaleBorn(1978-11-15)November 15, 1978Los Angeles, CaliforniaDiedMarch 13, 1998(1998-03-13) (aged 19)Cambridge, MassachusettsOccupation(s)College studentInternet software developerKnown forTotal AccessEarthLink Philip Chandler Gale (November 15, 1978 – March 13, 1998) was an American pioneering Internet software developer, computer prodigy, and sophomore student at the Massachusetts Institute of Technol...

 

У этого термина существуют и другие значения, см. Чи.Иероглиф клана Чи Чи — китайская фамилия (клан), буквальное значение водоём, пруд. Произношение ближе к «чы» . Чи Ю — в китайской мифологии великан-колдун, оспаривавший власть над миром у Небесного владыки Хуан-ди. Изв...

 

Junction Road Hau Wong Temple along Junction Road, with Mei Yan House of Mei Tung Estate under construction. Junction Road (Chinese: 聯合道; Cantonese Yale: Lyùhnhahp Dou) is a road in Kowloon, Hong Kong which runs between Kowloon City and Kowloon Tong. History The streets in Kowloon City, including Junction Road, were laid out in the late 1920s and early 1930s. However, at this stage, Junction Road only extended a short distance from Prince Edward Road.[1] By 1960, Juncti...

2012 Filipino coming-of-age film directed by Gino M Santos For other uses, see Animal (disambiguation). The AnimalsOfficial PosterDirected byGino M. SantosWritten byJeff SteltonProduced byGino M. SantosJane TorresStarringAlbie CasiñoDawn JimenezPatrick SuguiCinematographyAlex EsparteroEdited byRona Delos ReyesJohn WongMusic byDiwa de LeonDJ Nix Damn P!ProductioncompaniesStained Glass ProductionsCinemalayaRelease date July 20, 2012 (2012-07-20) (Cinemalaya Independent Film ...

 

Village in County Mayo, Ireland Village in Connacht, IrelandKillala Irish: Cill AlaVillageShops on the Ballycastle Road in KillalaKillalaLocation in IrelandCoordinates: 54°12′45″N 09°13′17″W / 54.21250°N 9.22139°W / 54.21250; -9.22139CountryIrelandProvinceConnachtCountyCounty MayoPopulation (2016)[1]562Time zoneUTC+0 (WET) • Summer (DST)UTC-1 (IST (WEST))Irish Grid ReferenceG206286 Killala (Irish: Cill Ala, meaning 'the mottled chur...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!