Free module

In mathematics, a free module is a module that has a basis, that is, a generating set that is linearly independent. Every vector space is a free module,[1] but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules.

Given any set S and ring R, there is a free R-module with basis S, which is called the free module on S or module of formal R-linear combinations of the elements of S.

A free abelian group is precisely a free module over the ring Z of integers.

Definition

For a ring and an -module , the set is a basis for if:

  • is a generating set for ; that is to say, every element of is a finite sum of elements of multiplied by coefficients in ; and
  • is linearly independent if for every of distinct elements, implies that (where is the zero element of and is the zero element of ).

A free module is a module with a basis.[2]

An immediate consequence of the second half of the definition is that the coefficients in the first half are unique for each element of M.

If has invariant basis number, then by definition any two bases have the same cardinality. For example, nonzero commutative rings have invariant basis number. The cardinality of any (and therefore every) basis is called the rank of the free module . If this cardinality is finite, the free module is said to be free of finite rank, or free of rank n if the rank is known to be n.

Examples

Let R be a ring.

  • R is a free module of rank one over itself (either as a left or right module); any unit element is a basis.
  • More generally, If R is commutative, a nonzero ideal I of R is free if and only if it is a principal ideal generated by a nonzerodivisor, with a generator being a basis.[3]
  • Over a principal ideal domain (e.g., ), a submodule of a free module is free.
  • If R is commutative, the polynomial ring in indeterminate X is a free module with a possible basis 1, X, X2, ....
  • Let be a polynomial ring over a commutative ring A, f a monic polynomial of degree d there, and the image of t in B. Then B contains A as a subring and is free as an A-module with a basis .
  • For any non-negative integer n, , the cartesian product of n copies of R as a left R-module, is free. If R has invariant basis number, then its rank is n.
  • A direct sum of free modules is free, while an infinite cartesian product of free modules is generally not free (cf. the Baer–Specker group).
  • A finitely generated module over a commutative local ring is free if and only if it is faithfully flat.[4] Also, Kaplansky's theorem states a projective module over a (possibly non-commutative) local ring is free.
  • Sometimes, whether a module is free or not is undecidable in the set-theoretic sense. A famous example is the Whitehead problem, which asks whether a Whitehead group is free or not. As it turns out, the problem is independent of ZFC.

Formal linear combinations

Given a set E and ring R, there is a free R-module that has E as a basis: namely, the direct sum of copies of R indexed by E

.

Explicitly, it is the submodule of the Cartesian product (R is viewed as say a left module) that consists of the elements that have only finitely many nonzero components. One can embed E into R(E) as a subset by identifying an element e with that of R(E) whose e-th component is 1 (the unity of R) and all the other components are zero. Then each element of R(E) can be written uniquely as

where only finitely many are nonzero. It is called a formal linear combination of elements of E.

A similar argument shows that every free left (resp. right) R-module is isomorphic to a direct sum of copies of R as left (resp. right) module.

Another construction

The free module R(E) may also be constructed in the following equivalent way.

Given a ring R and a set E, first as a set we let

We equip it with a structure of a left module such that the addition is defined by: for x in E,

and the scalar multiplication by: for r in R and x in E,

Now, as an R-valued function on E, each f in can be written uniquely as

where are in R and only finitely many of them are nonzero and is given as

(this is a variant of the Kronecker delta). The above means that the subset of is a basis of . The mapping is a bijection between E and this basis. Through this bijection, is a free module with the basis E.

Universal property

The inclusion mapping defined above is universal in the following sense. Given an arbitrary function from a set E to a left R-module N, there exists a unique module homomorphism such that ; namely, is defined by the formula:

and is said to be obtained by extending by linearity. The uniqueness means that each R-linear map is uniquely determined by its restriction to E.

As usual for universal properties, this defines R(E) up to a canonical isomorphism. Also the formation of for each set E determines a functor

,

from the category of sets to the category of left R-modules. It is called the free functor and satisfies a natural relation: for each set E and a left module N,

where is the forgetful functor, meaning is a left adjoint of the forgetful functor.

Generalizations

Many statements true for free modules extend to certain larger classes of modules. Projective modules are direct summands of free modules. Flat modules are defined by the property that tensoring with them preserves exact sequences. Torsion-free modules form an even broader class. For a finitely generated module over a PID (such as Z), the properties free, projective, flat, and torsion-free are equivalent.

Module properties in commutative algebra

See local ring, perfect ring and Dedekind ring.

See also

Notes

  1. ^ Keown (1975). An Introduction to Group Representation Theory. p. 24.
  2. ^ Hazewinkel (1989). Encyclopaedia of Mathematics, Volume 4. p. 110.
  3. ^ Proof: Suppose is free with a basis . For , must have the unique linear combination in terms of and , which is not true. Thus, since , there is only one basis element which must be a nonzerodivisor. The converse is clear.
  4. ^ Matsumura 1986, Theorem 7.10.

References

This article incorporates material from free vector space over a set on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Read other articles:

Salah satu tokoh dalam Konsili Efesus Latrosinium sering disebut sebagai Konsili Penyamun.[1] Paus Leo I (440-461) menyebut Konsili Efesus sebagai Konsili Penyamun karena Konsili itu dilakukan dengan menggunakan kekerasan dan tidak menggunakan prosedur yang jelas, sehingga hak Paus untuk mengadili dirampas.[2] Nama ini diberikan kepada Konsili yang diadakan di Efesus pada tahun 449.[1] Kaisar Theodosius II adalah orang yang memerintahkan diadakannya Konsili ini.[1&...

 

PostasoftwareLogoSchermata dell'applicazione su Windows 10Schermata dell'applicazione su Windows 10 GenereClient di posta SviluppatoreMicrosoft Corporation Sistema operativoMicrosoft Windows LicenzaProprietario(licenza non libera) Sito webwww.microsoft.com/ Modifica dati su Wikidata · Manuale Posta (già Windows Mail) è un client di posta elettronica e newsgroup creato da Microsoft ed incluso nel sistema operativo Windows Vista, Windows 8, Windows 8.1 e Windows 10.[1][2]...

 

Swedia baru tahun 1650. Swedia Baru, atau Nya Sverige, adalah pemukiman Swedia kecil di sepanjang sungai Delaware di pantai Atlantik Amerika Utara. Swedia Baru berpusat di Benteng Christina, kini di Wilmington, Delaware, dan termasuk negara bagian Delaware, New Jersey, dan Pennsylvania di Amerika Serikat sekarang ini. Pemukiman ini didirikan pada tanggal 29 Maret 1638, dan tergabung kepada Belanda Baru pada tanggal 15 September 1655. Bersama dengan bangsa Swedia, sejumlah besar penetap adalah...

Berikut daftar Kepala Daerah dan Wakil Kepala Daerah di 9 kabupaten/kota di Bali adalah: Kabupaten/Kota Foto Bupati/Wali Kota Bupati/Wali Kota Foto Wakil Bupati/Wali Kota Wakil Bupati/Wali Kota Mulai Menjabat Selesai Menjabat(Direncanakan) Ref KabupatenBadungDaftar Bupati/Wakil Bupati I Nyoman Giri Prasta I Ketut Suiasa 26 Februari 2021 26 Februari 2024 [1] KabupatenBangliDaftar Bupati/Wakil Bupati Sang Nyoman Sedana Arta I Wayan Diar 26 Februari 2021 26 Februari 2024 [1] Kabu...

 

Носенко Іван СидоровичНародився 19 квітня 1902(1902-04-19)Берлевець, Q4062175?, Дубровський район, РосіяПомер 2 серпня 1956(1956-08-02) (54 роки)Москва, СРСРПоховання Некрополь біля Кремлівської стіниКраїна  СРСРДіяльність політикAlma mater Національний університет кораблебудування імені а...

 

اضطراب النمو العصبي تعديل مصدري - تعديل   اضطرابات النمو العصبي هو ضعف النمو وتطور الدماغ أو الجهاز العصبي المركزي.[1][2] يشير هذا المصطلح باختصار إلى اضطراب في وظيفة الدماغ التي تؤثر على العاطفة، القدرة على التعلم، وضبط النفس والذاكرة والتي تكشف عن نمو الفرد. الأن...

Petrus KasihiwBupati Teluk Bintuni ke-3PetahanaMulai menjabat 18 Juni 2021PresidenJoko WidodoGubernurDominggus MandacanWakilMatret KokopMasa jabatan17 Juni 2016 – 17 Juni 2021PresidenJoko WidodoGubernurAbraham Octavianus AtururiEko Subowo (Pj.)Dominggus MandacanWakilMatret KokopPendahuluAlfons ManibuiIshak Laurens Hallatu (Pj.) Informasi pribadiLahir8 November 1964 (umur 59)Bintuni, Papua BaratKebangsaanIndonesiaPartai politik  NasDemSunting kotak info ...

 

Cet article dresse la liste des aéroports les plus fréquentés sur l'île. Évolution en graphique de Keflavik Pour des raisons techniques, il est temporairement impossible d'afficher le graphique qui aurait dû être présenté ici. Voir la requête brute et les sources sur Wikidata. Évolution en graphique en dehors de Keflavík Pour des raisons techniques, il est temporairement impossible d'afficher le graphique qui aurait dû être présenté ici. Voir la requête brute et les sources s...

 

Caste in India This article is about the Bairagi caste. For Hindustani classical raga, see Bairagi (raga). Not to be confused with the Celibate Ascetics (Vairagi). BairagiSwami • Vaishnav • MahantA Portrait of Bairagi Mahant(Tilak of Ramanandi Sampradaya on his body)ClassificationRamanandi Sampradaya • Nimbarka Sampradaya • Vishnuswami Sampradaya • Madhvacharya Sampradaya[1]Kuladevta (male)Rama • Krishna • (Avatars of Vishnu) • HanumanKuladevi (female)Sita • Radha•...

Lebanese and British barrister (born 1978) Amal ClooneyClooney in 2014BornAmal Alamuddin (1978-02-03) 3 February 1978 (age 45)Beirut, LebanonCitizenshipLebanonUnited KingdomEducationSt Hugh's College, Oxford (BA)New York University (LLM)OccupationBarristerYears active2000–presentSpouse George Clooney ​(m. 2014)​Children2 Amal Clooney (née Alamuddin; Arabic: أمل كلوني; born 3 February 1978)[1] is a Lebanese and British barrister.&#...

 

Fictional character from the television series Holby City Fictional character Nicky McKendrickHolby City characterBelinda Owusu as Nicky McKendrickFirst appearanceWe Need to Talk About Fredrik12 December 2017Last appearanceEpisode 110229 March 2022Portrayed byBelinda OwusuIn-universe informationOccupation CT3 doctor (prev. F1 doctor, F2 doctor, CT1 doctor) FamilyTracey McKendrick (mother)Significant otherCameron DunnLouis McGerry Nicky McKendrick is a fictional character from the BBC medical ...

 

Blade ManPoster promosi untuk Blade ManGenreRomansa Fantasi Drama KomediDitulis olehKim Kyu-wanSutradaraKim Yong-soo Kim Jong-yeonPemeranLee Dong-wook Shin Se-kyungNegara asalKorea SelatanBahasa asliKoreaJmlh. episode18ProduksiProduser eksekutifBae Kyung-sooProduserIm Se-joonLokasi produksiKoreaRumah produksiiHQ Gazi ContentsRilis asliRilis10 September (2014-09-10) –13 November 2014 (2014-11-13) Blade Man (Hangul: 아이언맨; RR: Aieonmaen; lit. Iron M...

A neutralidade deste artigo foi questionada. Discussão relevante pode ser encontrada na página de discussão. Governo Anastasia de Minas Gerais Gestão Antônio Anastasia no governo de Minas Gerais Gestão Antonio Anastasia no governo de Minas GeraisAnastasia em 2015. Governador de MinasGerais Período 31 de março de 2010a 4 de abril de 2014 Vice-governador Nenhum (2010–2011) Alberto Pinto Coelho Júnior (2011–2014) Antecessor(a) Aécio Neves Sucessor(a) Alberto Pinto Coelho Júnior Pa...

 

У этого термина существуют и другие значения, см. Алгебра (значения). Трёхмерный правильный коноид, описанный тригонометрическими уравнениями x = v × cos ⁡ ( u ) {\displaystyle x=v\times \cos(u)} , y = v × sin ⁡ ( u ) {\displaystyle y=v\times \sin(u)} , z = 2 × sin ⁡ ( u ) {\displaystyle z=2\times \sin(u)} А́лгебра (от ар...

 

See also: List of songs written by Natasha Bedingfield Natasha Bedingfield discographyStudio albums4Video albums1Music videos24EPs1Singles20 The English singer Natasha Bedingfield has released 4 studio albums, 20 singles, 24 music videos, and 1 video album. Bedingfield's debut album, Unwritten, was released in the United Kingdom in September 2004. It produced four singles: Single, These Words, which peaked at number one on the UK Singles Chart, Unwritten and I Bruise Easily. The album reached...

New Zealand demographer (1936–2022) Ian PoolCNZM FRSNZPool in 2013BornDavid Ian Pool(1936-11-22)22 November 1936Auckland, New ZealandDied28 April 2022(2022-04-28) (aged 85)Hamilton, New ZealandAlma materAustralian National UniversitySpouseJanet SceatsChildren2Scientific careerFieldsDemographyInstitutionsUniversity of WaikatoThesisThe Maori population of New Zealand (1964)Doctoral advisorW. D. Borrie David Ian Pool CNZM FRSNZ (22 November 1936 – 28 April 2022) was a ...

 

Former province of Japan Dewa Province出羽国Province of Japan712–1869Map of Japanese provinces (1868) with Dewa Province highlightedCapitalHiraka DistrictHistory • Established 712• Disestablished 1869 Preceded by Succeeded by Echigo Province Uzen Province Ugo Province Today part ofAkita PrefectureYamagata Prefecture Dewa Province (出羽国, Dewa no kuni) was a province of Japan comprising modern-day Yamagata Prefecture and Akita Prefecture,[1] except for the c...

 

World Series 1992 Competizione Major League Baseball 1992 Sport Baseball Edizione 89ª Organizzatore Major League Baseball Date dal 17 ottobreal 24 ottobre Sito web https://www.worldseries.com/ Risultati Vincitore  Toronto Blue Jays(1º titolo) Finalista  Atlanta Braves Statistiche Miglior giocatore Pat Borders Cronologia della competizione 1991 1993 Manuale Le World Series 1992 sono state la 89ª edizione della serie di finale della Major League Baseball al meglio del...

السيف الياباني (باليابانية: 日本刀، هيبورن: nihontō) هو واحد من الأسلحة التقليدية في اليابان.[1][2][3] هناك عدة أنواع من السيوف اليابانية، وفقا للحجم، مجال الاستخدام، طريقة التصنيع. التصنيف التصنيف حسب الفترة ينقسم إنتاج السيوف في اليابان إلى فترات زمنية محددة:[4] ...

 

只見川 只見川と蒲生岳。JR会津塩沢駅(寄岩橋)付近より水系 一級水系 阿賀野川種別 一級河川延長 145.2 km平均流量 -- m³/s流域面積 2,792.0 km²水源 尾瀬沼(福島県・群馬県)水源の標高 -- m河口・合流先 阿賀川(喜多方市)流域 日本群馬県・新潟県・福島県テンプレートを表示 第三只見川橋梁を渡るC11形蒸気機関車(1973年9月) 会津蒲生岳より見る只見川と寄岩...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!