Principal ideal domains are mathematical objects that behave like the integers, with respect to divisibility: any element of a PID has a unique factorization into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If x and y are elements of a PID without common divisors, then every element of the PID can be written in the form ax + by, etc.
: rings of polynomials in one variable with coefficients in a field. (The converse is also true, i.e. if is a PID then is a field.) Furthermore, a ring of formal power series in one variable over a field is a PID since every ideal is of the form ,
is an example of a ring that is not a unique factorization domain, since Hence it is not a principal ideal domain because principal ideal domains are unique factorization domains. Also, is an ideal that cannot be generated by a single element.
: the ring of all polynomials with integer coefficients. It is not principal because is an ideal that cannot be generated by a single polynomial.
Most rings of algebraic integers are not principal ideal domains. This is one of the main motivations behind Dedekind's definition of Dedekind domains, which allows replacing unique factorization of elements with unique factorization of ideals. In particular, many for the primitive p-th root of unity are not principal ideal domains.[3] The class number of a ring of algebraic integers gives a measure of "how far away" the ring is from being a principal ideal domain.
The key result is the structure theorem: If R is a principal ideal domain, and M is a finitely
generated R-module, then is a direct sum of cyclic modules, i.e., modules with one generator. The cyclic modules are isomorphic to for some [4] (notice that may be equal to , in which case is ).
If M is a free module over a principal ideal domain R, then every submodule of M is again free.[5] This does not hold for modules over arbitrary rings, as the example of modules over shows.
Properties
In a principal ideal domain, any two elements a,b have a greatest common divisor, which may be obtained as a generator of the ideal (a, b).
All Euclidean domains are principal ideal domains, but the converse is not true.
An example of a principal ideal domain that is not a Euclidean domain is the ring ,[6][7] this was proved by Theodore Motzkin and was the first case known.[8] In this domain no q and r exist, with 0 ≤ |r| < 4, so that , despite and having a greatest common divisor of 2.
Every principal ideal domain is a unique factorization domain (UFD).[9][10][11][12] The converse does not hold since for any UFD K, the ring K[X, Y] of polynomials in 2 variables is a UFD but is not a PID. (To prove this look at the ideal generated by It is not the whole ring since it contains no polynomials of degree 0, but it cannot be generated by any one single element.)
Any Euclidean norm is a Dedekind-Hasse norm; thus, (5) shows that a Euclidean domain is a PID. (4) compares to:
An integral domain is a UFD if and only if it is a GCD domain (i.e., a domain where every two elements have a greatest common divisor) satisfying the ascending chain condition on principal ideals.
An integral domain is a Bézout domain if and only if any two elements in it have a gcd that is a linear combination of the two. A Bézout domain is thus a GCD domain, and (4) gives yet another proof that a PID is a UFD.
^Proof: every prime ideal is generated by one element, which is necessarily prime. Now refer to the fact that an integral domain is a UFD if and only if its prime ideals contain prime elements.