Dragon curve

Heighway dragon curve

A dragon curve is any member of a family of self-similar fractal curves, which can be approximated by recursive methods such as Lindenmayer systems. The dragon curve is probably most commonly thought of as the shape that is generated from repeatedly folding a strip of paper in half, although there are other curves that are called dragon curves that are generated differently.

Heighway dragon

The Heighway dragon (also known as the Harter–Heighway dragon or the Jurassic Park dragon) was first investigated by NASA physicists John Heighway, Bruce Banks, and William Harter. It was described by Martin Gardner in his Scientific American column Mathematical Games in 1967. Many of its properties were first published by Chandler Davis and Donald Knuth. It appeared on the section title pages of the Michael Crichton novel Jurassic Park.[1]

Construction

Recursive construction of the curve
Recursive construction of the curve

The Heighway dragon can be constructed from a base line segment by repeatedly replacing each segment by two segments with a right angle and with a rotation of 45° alternatively to the right and to the left:[2]

The first 5 iterations and the 9th
The first 5 iterations and the 9th

The Heighway dragon is also the limit set of the following iterated function system in the complex plane:

with the initial set of points .

Using pairs of real numbers instead, this is the same as the two functions consisting of

Folding the dragon

The Heighway dragon curve can be constructed by folding a strip of paper, which is how it was originally discovered.[1] Take a strip of paper and fold it in half to the right. Fold it in half again to the right. If the strip was opened out now, unbending each fold to become a 90-degree turn, the turn sequence would be RRL, i.e. the second iteration of the Heighway dragon. Fold the strip in half again to the right, and the turn sequence of the unfolded strip is now RRLRRLL – the third iteration of the Heighway dragon. Continuing folding the strip in half to the right to create further iterations of the Heighway dragon (in practice, the strip becomes too thick to fold sharply after four or five iterations).

The folding patterns of this sequence of paper strips, as sequences of right (R) and left (L) folds, are:

  • 1st iteration: R
  • 2nd iteration: R R L
  • 3rd iteration: R R L R R L L
  • 4th iteration: R R L R R L L R R R L L R L L.

Each iteration can be found by copying the previous iteration, then an R, then a second copy of the previous iteration in reverse order with the L and R letters swapped.[1]

Properties

  • Many self-similarities can be seen in the Heighway dragon curve. The most obvious is the repetition of the same pattern tilted by 45° and with a reduction ratio of . Based on these self-similarities, many of its lengths are simple rational numbers.
Lengths
Self-similarities
Tiling of the plane by dragon curves
  • The dragon curve can tile the plane. One possible tiling replaces each edge of a square tiling with a dragon curve, using the recursive definition of the dragon starting from a line segment. The initial direction to expand each segment can be determined from a checkerboard coloring of a square tiling, expanding vertical segments into black tiles and out of white tiles, and expanding horizontal segments into white tiles and out of black ones.[3]
  • As a space-filling curve, the dragon curve has fractal dimension exactly 2. For a dragon curve with initial segment length 1, its area is 1/2, as can be seen from its tilings of the plane.[1]
  • The boundary of the set covered by the dragon curve has infinite length, with fractal dimension where is the real solution of the equation [4]

Twindragon

Twindragon curve constructed from two Heighway dragons

The twindragon (also known as the Davis–Knuth dragon) can be constructed by placing two Heighway dragon curves back to back (after flipping the original dragon curve vertically and horizontally). It is also the limit set of the following iterated function system:

where the initial shape is defined by the following set .

It can be also written as a Lindenmayer system – it only needs adding another section in the initial string:

  • angle 90°
  • initial string FX+FX+
  • string rewriting rules
    • XX+YF
    • YFXY.

It is also the locus of points in the complex plane with the same integer part when written in base .[5]

Terdragon

Terdragon curve.
A sculpture depicting multiple iterations of the Lindenmayer system that generates the terdragon curve.
by Henry Segerman

The terdragon can be written as a Lindenmayer system:

  • angle 120°
  • initial string F
  • string rewriting rules
    • FF+F−F.

It is the limit set of the following iterated function system:

Lévy dragon

The Lévy C curve is sometimes known as the Lévy dragon.[6]

Lévy C curve.

Occurrences of the dragon curve in solution sets

Having obtained the set of solutions to a linear differential equation, any linear combination of the solutions will, because of the superposition principle, also obey the original equation. In other words, new solutions are obtained by applying a function to the set of existing solutions. This is similar to how an iterated function system produces new points in a set, though not all IFS are linear functions. In a conceptually similar vein, a set of Littlewood polynomials can be arrived at by such iterated applications of a set of functions.

A Littlewood polynomial is a polynomial: where all .

For some we define the following functions:

Starting at z=0 we can generate all Littlewood polynomials of degree d using these functions iteratively d+1 times.[7] For instance:

It can be seen that for , the above pair of functions is equivalent to the IFS formulation of the Heighway dragon. That is, the Heighway dragon, iterated to a certain iteration, describe the set of all Littlewood polynomials up to a certain degree, evaluated at the point . Indeed, when plotting a sufficiently high number of roots of the Littlewood polynomials, structures similar to the dragon curve appear at points close to these coordinates.[7][8][9]

See also

References

  1. ^ a b c d Tabachnikov, Sergei (2014), "Dragon curves revisited", The Mathematical Intelligencer, 36 (1): 13–17, doi:10.1007/s00283-013-9428-y, MR 3166985, S2CID 14420269
  2. ^ Edgar, Gerald (2008), "Heighway's Dragon", in Edgar, Gerald (ed.), Measure, Topology, and Fractal Geometry, Undergraduate Texts in Mathematics (2nd ed.), New York: Springer, pp. 20–22, doi:10.1007/978-0-387-74749-1, ISBN 978-0-387-74748-4, MR 2356043
  3. ^ Edgar (2008), "Heighway’s Dragon Tiles the Plane", pp. 74–75.
  4. ^ Edgar (2008), "Heighway Dragon Boundary", pp. 194–195.
  5. ^ Knuth, Donald (1998). "Positional Number Systems". The art of computer programming. Vol. 2 (3rd ed.). Boston: Addison-Wesley. p. 206. ISBN 0-201-89684-2. OCLC 48246681.
  6. ^ Bailey, Scott; Kim, Theodore; Strichartz, Robert S. (2002), "Inside the Lévy dragon", The American Mathematical Monthly, 109 (8): 689–703, doi:10.2307/3072395, JSTOR 3072395, MR 1927621.
  7. ^ a b "The n-Category Café".
  8. ^ "Week285".
  9. ^ "The Beauty of Roots". 2011-12-11.

Read other articles:

Transport MinistryAdministrative map of Haryana with RTO codes for vehicle registrationAgency overviewParent agencyGovernment of HaryanaChild agencyTransport Department (Haryana) Ministry of Transport, Government of Haryana was established.[when?] List of ministers Ram Bilas Sharma (2014-2015)[1][2] Krishan Pal Gurjar (1996–99) List of ministers of state Krishan Lal Panwar (2014-Incumbent)[3][4] Dharambir (1987-1989) See also Haryana Roadways Referenc...

 

Марета ВестНародилася 9 серпня 1915(1915-08-09)Померла 2 листопада 1998(1998-11-02) (83 роки)Країна  СШАДіяльність астрономAlma mater Університет Оклахоми Марета Н. Вест (9 серпня 1915 р. — 2 листопада 1998 р.[1]) — американська астрогеолог, яка у 1960-х роках вибрала місце першої пос...

 

VW Typ 82, auch alsVW-Kübelwagen bekannt Die Bezeichnung Kübelwagen bzw. Kübelsitzwagen ist auf den Beginn der Entwicklung von geländetauglichen Militär-Pkw zurückzuführen und wurde später zum Synonym für einfache oder minimalistisch ausgestattete Geländefahrzeuge. Inhaltsverzeichnis 1 Beschreibung 2 Kübelsitzwagen der Wehrmacht 2.1 VW Kübelwagen der Wehrmacht 2.2 Andere Kübelwagen der Wehrmacht 3 Nachfolger von klassischen Kübelwagen 4 Literatur 5 Weblinks Beschreibung Die Entw...

Mexican band Grupo FirmeBackground informationOriginTijuana, Baja California, MexicoGenresRegional Mexican, Pacific Norteño, Banda, Norteño-BandaYears active2014 (2014)-presentLabelsMusic VIPMembersEduin CazaresJhonny CazaresJairo CorralesChristian TéllezJoaquín RuizDylan CamachoJosé “Fito” Rubio Grupo Firme is a Mexican band based in Tijuana, Baja California. Formed in 2014, they have received nominations for a variety of awards that include Premios Juventud and Premio Lo Nuest...

 

American politician Matt DorseyMember of theSan Francisco Board of Supervisorsfrom District 6IncumbentAssumed office May 9, 2022Preceded byMatt Haney Personal detailsPolitical partyDemocraticAlma materEmerson College[1]WebsitePersonal WebsiteSan Francisco District 6 Matt Dorsey is an American politician and communications professional. Dorsey has served on the San Francisco Board of Supervisors representing District 6 since his appointment by Mayor London Breed on May 9, 2022. He ...

 

Homeotic protein bicoidIdentifiersOrganismeDrosophila melanogasterSimbolbcdUniProtP09081PencarianStrukturSwiss-modelDomainInterPro (Atas) Gradien protein Bicoid Nuklir dalam embrio Drosophila transgenik tetap yang membawa gen fusi Bicoid-GFP. Gambar milik Julien O. Dubuis dan Thomas Gregor. (Bawah) Protein bicoid-GFP (hijau) dan mRNA bicoid berlabel IKAN (merah) di ujung anterior embrio Drosophila transgenik tetap. Kedua embrio berorientasi dengan kutub anterior di sebelah kiri. Gambar milik ...

My Early Life Sampul edisi sampul kertas My Early Life, 2011PengarangWinston Spencer ChurchillNegaraInggrisSubjekKampanye militerGenreAutobiografiPenerbitT. Butterworth, LondonC. Scribner's Sons, New YorkTanggal terbit1930 (1930) My Early Life, juga dikenal di AS sebagai A Roving Commission: My Early Life, adalah sebuah buku tahun 1930 karya Winston Churchill. Karya tersebut adalah autobiografi dari kelahirannya pada 1874 sampai sekitar 1902. Referensi Pranala luar My Early Life. A ...

 

2010 Polish filmSparrowTheatrical Release PosterDirected byShaun TrokeWritten byMatthew MosleyJustin Di FeboProduced byWojciech StuchlikStarringFaye SewellThomas James LongleyAlexis Jayne DefoeEric KolelasCinematographyJakub JakielaszekEdited byPawel SlawekMusic byJakub GawlinaProductioncompanyWojciech Stuchlik Independent Film ProductionRelease date 23 October 2010 (2010-10-23) (London premiere) Running time72 minutesCountriesPolandUnited KingdomLanguageEnglishBudget£50,0...

 

  Lempeng Antarktika, berwarna biru tua (bagian bawah). Lempeng Antarktika adalah sebuah lempeng tektonik yang meliputi benua Antarktika serta bentangan samudra yang melingkupinya. Lempeng Antarktika berbatasan dengan Lempeng Nazca, Lempeng Amerika Selatan, Lempeng Afrika, Lempeng Indo-Australia, Lempeng Scotia, serta perbatasan yang memanjang dengan Lempeng Pasifik yang membentuk Punggung laut Pasifik-Antarktika. Luas Lempeng Antarktika kira-kira mencapai 60.900.000 kilometer perse...

1521 collection of Wessel Gansfort's works This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Sum of Christianity – news · newspapers · books · scholar · JSTOR (March 2015) The Sum of Christianity or Farrago Rerum Theologicarum, is a collection of Wessel Gansfort's writings published at Zwolle, probab...

 

1995 single by Paul Weller The ChangingmanPromotional single coverSingle by Paul Wellerfrom the album Stanley Road Released24 April 1995 (1995-04-24)Length4:02LabelGo! DiscsSongwriter(s)Brendan Lynch, Paul WellerProducer(s)Brendan Lynch, Paul WellerPaul Weller singles chronology Out of the Sinking (1994) The Changingman (1995) You Do Something to Me (1995) The Changingman is a song by British singer-songwriter Paul Weller, released as the lead single from his third solo album, ...

 

Rapid transit system in UkraineYou can help expand this article with text translated from the corresponding article in Russian. (April 2023) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not translate text ...

25 April 1464 battle of the Wars of the Roses Battle of Hedgeley MoorPart of the Wars of the RosesPlan of the battle of Hedgeley Moor (Battles and Battlefields in England, 1896)Date25 April 1464LocationHedgeley Moor in Northumberland, EnglandResult Yorkist victoryBelligerents House of York House of LancasterCommanders and leaders Baron Montagu Duke of SomersetBaron RosBaron HungerfordSir Ralph Percy †Strength 6,000 5,000Casualties and losses unknown unknown vteWars of the Roses 1st...

 

Township in Indiana, United StatesSmithfield TownshipTownshipLocation of Smithfield Township in DeKalb CountyCoordinates: 41°29′01″N 85°01′30″W / 41.48361°N 85.02500°W / 41.48361; -85.02500CountryUnited StatesStateIndianaCountyDeKalbGovernment • TypeIndiana townshipArea • Total35.09 sq mi (90.9 km2) • Land34.99 sq mi (90.6 km2) • Water0.1 sq mi (0.3 km2)Elevation ...

 

Alexis ArgüelloData diriJulukanEl Flaco Explosivo (The Explosive Thin Man)El Caballero del Ring (The Ring's Gentleman)KelasKelas buluKelas bulu superKelas ringanTinggi5'10 (178 cm)Jangkauan72Kebangsaan NikaraguaLahir(1952-04-19)19 April 1952Managua, NikaraguaMeninggal1 Juli 2009(2009-07-01) (umur 57)Managua, NikaraguaGayaOrtodoksCatatan pertandinganTotal tanding90Menang82Menang KO65Kalah8 Alexis Arguello (lahir 19 April 1952) adalah petinju juara dunia WBC kelas bulu super dan kela...

Montgauch—  Comună  —MontgauchMontgauch (Franța)Poziția geograficăCoordonate: 43°0′N 1°4.8′E ({{PAGENAME}}) / 43.000°N 1.0800°EȚară FranțaRegiuneOccitaniaDepartamentAriègeSuprafață[2]  - Total9,15 km²Altitudine376 m.d.m.Populație (2009)[1] - Total117 locuitori - Densitate12,79 loc./km²Fus orarUTC+1Cod poștal09160Cod INSEE09208Prezență online OpenStreetMap rel...

 

Extinct genus of amphibians Not to be confused with the dinosaur Brachiosaurus. BranchiosaurusTemporal range: Lower Permian Fossil of B. salamandroides in the Museo di Storia Naturale di Venezia Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Order: †Temnospondyli Family: †Branchiosauridae Subfamily: †Branchiosaurinae Genus: †BranchiosaurusFritsch, 1876 Species B. salamandroides Fritsch, 1875 B. umbrosus Fritsch, 1879 Branchiosaurus (from Greek: βράγ...

 

التموين والنقل الملكي الأردني الدولة  الأردن الإنشاء 1948 جزء من القوات البرية الملكية الأردنية تعديل مصدري - تعديل   التموين والنقل الملكي الأردني هو أحد تشكيلات القوات البرية الملكية الأردنية في الجيش العربي، ولقد انطلق التشكيل عام 1948 تحت اسم مديرية الإعاشة والنقلي...

Marcha sobre Versalles Ilustración alusiva a la marcha sobre Versalles. Museo Carnavalet (París)LocalizaciónPaís  FranciaLugar VersallesDatos generalesTipo acontecimiento y motín de subsistenciasSuceso Se produjo una manifestación partiendo desde París hasta Versalles para reclamar al rey reformas sociales.Sede ParisParticipantes Mujeres parisinas y obrerosHistóricoFecha de inicio 5 y 6 de octubre de 1789Fecha de fin 6 de octubre de 1789Cronología Toma de la Bastilla ◄ Actual ...

 

У этого термина существуют и другие значения, см. Крещение Руси (значения). «Крещение Руси». Фреска работы В. М. Васнецова в киевском Владимирском соборе. 1895—1896 Креще́ние Руси́ — термин, под которым в современной исторической науке понимается комплекс взаимосвязанных со...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!