Douady rabbit

A Douady rabbit is a fractal derived from the Julia set of the function , when parameter is near the center of one of the period three bulbs of the Mandelbrot set for a complex quadratic map.

It is named after French mathematician Adrien Douady.

An example of a Douady rabbit. The colors show the number of iterations required to escape.

Background

The Douady rabbit is generated by iterating the Mandelbrot set map on the complex plane, where parameter is fixed to lie in one of the two period three bulb off the main cardioid and ranging over the plane. The resulting image can be colored by corresponding each pixel with a starting value and calculating the amount of iterations required before the value of escapes a bounded region, after which it will diverge toward infinity.

It can also be described using the logistic map form of the complex quadratic map, specifically

which is equivalent to

.

Irrespective of the specific iteration used, the filled Julia set associated with a given value of (or ) consists of all starting points (or ) for which the iteration remains bounded. Then, the Mandelbrot set consists of those values of (or ) for which the associated filled Julia set is connected. The Mandelbrot set can be viewed with respect to either or .

The Mandelbrot set in the plane
The Mandelbrot set in the plane

Noting that is invariant under the substitution , the Mandelbrot set with respect to has additional horizontal symmetry. Since and are affine transformations of one another, or more specifically a similarity transformation, consisting of only scaling, rotation and translation, the filled Julia sets look similar for either form of the iteration given above.

Detailed description

Douady rabbit in an exponential family
Lamination of the rabbit Julia set
Representation of the dynamics inside the rabbit

You can also describe the Douady rabbit utilising the Mandelbrot set with respect to as shown in the graph above. In this figure, the Mandelbrot set superficially appears as two back-to-back unit disks with sprouts or buds, such as the sprouts at the one- and five-o'clock positions on the right disk or the sprouts at the seven- and eleven-o'clock positions on the left disk. When is within one of these four sprouts, the associated filled Julia set in the mapping plane is said to be a Douady rabbit. For these values of , it can be shown that has and one other point as unstable (repelling) fixed points, and as an attracting fixed point. Moreover, the map has three attracting fixed points. A Douady rabbit consists of the three attracting fixed points , , and and their basins of attraction.

For example, Figure 4 shows the Douady rabbit in the plane when , a point in the five-o'clock sprout of the right disk. For this value of , the map has the repelling fixed points and . The three attracting fixed points of (also called period-three fixed points) have the locations

The red, green, and yellow points lie in the basins , , and of , respectively. The white points lie in the basin of .

The action of on these fixed points is given by the relations , , and .

Corresponding to these relations there are the results

Figure 4: Douady rabbit for or

As a second example, Figure 5 shows a Douady rabbit when , a point in the eleven-o'clock sprout on the left disk ( is invariant under this transformation). This rabbit is more symmetrical in the plane. The period-three fixed points then are located at

The repelling fixed points of itself are located at and . The three major lobes on the left, which contain the period-three fixed points ,, and , meet at the fixed point , and their counterparts on the right meet at the point . It can be shown that the effect of on points near the origin consists of a counterclockwise rotation about the origin of , or very nearly , followed by scaling (dilation) by a factor of .

Figure 5: Douady rabbit for or

Variants

A twisted rabbit[1] is the composition of a rabbit polynomial with powers of Dehn twists about its ears.[2]

The corabbit is the symmetrical image of the rabbit. Here parameter . It is one of 2 other polynomials inducing the same permutation of their post-critical set are the rabbit.

3D

The Julia set has no direct analog in three dimensions.

4D

A quaternion Julia set with parameters and a cross-section in the plane. The Douady rabbit is visible in the cross-section.

Embedded

A small embedded homeomorphic copy of rabbit in the center of a Julia set[3]

Fat

The fat rabbit or chubby rabbit has c at the root of the 1/3-limb of the Mandelbrot set. It has a parabolic fixed point with 3 petals.[4]

n-th eared

In general, the rabbit for the th bulb of the main cardioid will have ears[5] For example, a period four bulb rabbit has three ears.

Perturbed

Perturbed rabbit[6]

Twisted rabbit problem

In the early 1980s, Hubbard posed the so-called twisted rabbit problem, a polynomial classification problem. The goal is to determine Thurston equivalence types[definition needed] of functions of complex numbers that usually are not given by a formula (these are called topological polynomials):[7]

  • given a topological quadratic whose branch point is periodic with period three, determining which quadratic polynomial it is Thurston equivalent to
  • determining the equivalence class of twisted rabbits, i.e. composite of the rabbit polynomial with nth powers of Dehn twists about its ears.

The problem was originally solved by Laurent Bartholdi and Volodymyr Nekrashevych[8] using iterated monodromic groups. The generalization of the problem to the case where the number of post-critical points is arbitrarily large has been solved as well.[9]

See also

References

  1. ^ "A Geometric Solution to the Twisted Rabbit Problem by Jim Belk, University of St Andrews" (PDF). Archived (PDF) from the original on 2022-11-01. Retrieved 2022-05-03.
  2. ^ Laurent Bartholdi; Volodymyr Nekrashevych (2006). "Thurston equivalence of topological polynomials". Acta Mathematica. 197: 1–51. arXiv:math/0510082. doi:10.1007/s11511-006-0007-3.
  3. ^ "Period-n Rabbit Renormalization. 'Rabbit's show' by Evgeny Demidov". Archived from the original on 2022-05-03. Retrieved 2022-05-03.
  4. ^ Note on dynamically stable perturbations of parabolics by Tomoki Kawahira Archived October 2, 2006, at the Wayback Machine
  5. ^ "Twisted Three-Eared Rabbits: Identifying Topological Quadratics Up To Thurston Equivalence by Adam Chodof" (PDF). Archived (PDF) from the original on 2022-05-03. Retrieved 2022-05-03.
  6. ^ "Recent Research Papers (Only since 1999) Robert L. Devaney: Rabbits, Basilicas, and Other Julia Sets Wrapped in Sierpinski Carpets". Archived from the original on 2019-10-23. Retrieved 2020-04-07.
  7. ^ "Polynomials, dynamics, and trees by Becca Winarski" (PDF). Archived (PDF) from the original on 2022-11-01. Retrieved 2022-05-08.
  8. ^ Laurent Bartholdi; Volodymyr Nekrashevych (2005). "Thurston equivalence of topological polynomials". arXiv:math/0510082v3.
  9. ^ James Belk; Justin Lanier; Dan Margalit; Rebecca R. Winarski (2019). "Recognizing Topological Polynomials by Lifting Trees". arXiv:1906.07680v1 [math.DS].

This article incorporates material from Douady Rabbit on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Read other articles:

This article is about recent and past political developments in Senegal. For the Senegal government, see Government of Senegal.Political system of Senegal Politics of Senegal Constitution Human rights Government President Macky Sall Prime Minister Amadou Ba Cabinet of Senegal Parliament National Assembly Speaker: Moustapha Niasse Judiciary Court of Cassation Administrative divisions Regions Departments Arrondissements Communes Rural communities Elections Recent elections Presidential: 2012201...

 

DC Comics character Comics character Granny GoodnessGranny GoodnessArt by Jack KirbyPublication informationPublisherDC ComicsFirst appearanceMister Miracle #2 (May 1971)Created byJack KirbyIn-story informationAlter egoGoodnessSpeciesNew GodPlace of originApokolipsTeam affiliationsFemale FuriesDarkseid's EliteNotable aliasesAthenaAbilities Superhuman strength, speed, stamina, and durability Immortality Expert strategist, tactician, and field commander Skilled warrior Wields mega-rod and advanc...

 

Gimnasia y Esgrima de Pergamino Datos generalesNombre Club de Gimnasia y EsgrimaApodo(s) Lobo - Mens SanaFundación 1 de enero de 1921 (102 años)Presidente Mariano BallestraseInstalacionesEstadio Atilio Saint Julien/Socios FundadoresUbicación Pergamino, Bs AsRegional Liga de Pergamino Actualidad  Gimnasia y Esgrima de Pergamino (Facebook)[editar datos en Wikidata] El Club de Gimnasia y Esgrima es una institución dedicada al deporte en la localidad bonaerense de Pergamin...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) زولت فيهير معلومات شخصية الميلاد 15 يونيو 1975 (48 سنة)  سغليد  الطول 1.90 م (6 قدم 3 بوصة) مركز اللعب مدافع الجنسية المجر  معلومات النادي النادي الحال...

 

Pour un article plus général, voir Championnats du monde d'athlétisme. 100 m haies aux championnats du monde d'athlétisme Finale du 100 m haies lors des championnats du monde 2019.Généralités Sport Athlétisme100 m haies Organisateur(s) World Athletics Éditions 18e en 2022 Catégorie Championnats du monde Palmarès Tenant du titre Danielle Williams (2023) Plus titré(s) Gail Devers (3) Records Tobi Amusan (12 s 12, 2022) modifier Le 100 mètres haies fait partie des épreuves ins...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. Pakandei atau pakaddei adalah upacara adat menyambut besan yang dilaksanakan oleh Suku Mentawai, terutama di Kecamatan Siberut Utara. Upacara adat ini merupakan rangkaian upacara perkawinan berupa pesta makan daging babi bersama. Upacara pakandei dapa...

Stasiun Wanaraja C31 Stasiun Wanaraja yang sudah selesai direnovasi, 2020LokasiWanasari, Wanaraja, Garut, Jawa BaratIndonesiaKetinggian+692 mOperatorKAI CommuterLetak dari pangkalkm 9+100 lintas Cibatu-Cikajang[1]Jumlah peronDua peron sisi yang tinggiJumlah jalur2 (jalur 1: sepur lurus)KonstruksiAkses difabelAdaInformasi lainKode stasiunWNR1824[2]KlasifikasiIII/kecil[butuh rujukan]SejarahDibuka14 Agustus 1889; 134 tahun lalu (1889-08-14)Ditutup1983; 40 tahun lalu&...

 

  لمعانٍ أخرى، طالع محمد جمال (توضيح). محمد جمال معلومات شخصية الاسم الكامل محمد جمال باظفاري الميلاد 11 مايو 1994 (العمر 29 سنة)أبوظبي، الإمارات الطول 1.73 م (5 قدم 8 بوصة) مركز اللعب لاعب وسط الجنسية الإمارات العربية المتحدة  معلومات النادي النادي الحالي الجزيرة الر

 

Друга лігаСезон 2015—2016Підвищилися «Колос»«Верес»«Інгулець»«Буковина»«Скала»«Арсенал-Київ»Вибули «Барса»Зіграно матчів 182Забито голів 487 (2.68 за гру)Найкращий бомбардир Олександр Бондаренко («Колос») − 20Найбільша перемога вдома 8:0 («Кремінь» — «Арсенал-Київщина»)

Kurt KüttnerKurt KüttnerNickname(s)Kiwe (Yiddish)Died1964Allegiance Nazi GermanyService/branch SchutzstaffelRank SS-Oberscharführer (Staff Sergeant)Commands heldLower camp of Treblinka Kurt Küttner (1907 – 1964) was an SS-Oberscharführer (Staff Sergeant) who served at Treblinka extermination camp, arrested and charged with war crimes at the Treblinka trials twenty years after the war ended. Career Before World War II, Kurt (Fritz)[1] Küttner worked for many years as a war...

 

Ingrid Hack (2017) Ingrid Hack (* 28. Juli 1964 in Köln) ist eine deutsche Politikerin (SPD). Sie war Abgeordnete des Landtags von Nordrhein-Westfalen. Leben & Politik Hack machte 1983 ihr Abitur in Dormagen und studierte Germanistik, Geschichte und Politologie an der Universität zu Köln. 1992 beendete sie ihr Studium mit dem Magisterabschluss. Ab 1986 arbeitete sie als Verlagsangestellte und nach einer berufsbegleitenden Ausbildung zur Marketing-Fachwirtin im Bereich Öffentlichkeitsa...

 

For the data downloading process, see sideloading. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Transloading – news · newspapers · books · scholar · JSTOR (May 2009) (Learn how and when to remove this template message) A transloading facility in Texas, between rail and road transport Transloading, also kn...

Núi SugarloafCon đường dẫn lên đỉnh núi SugarloafĐộ cao312 ft (95 m)[1]Phần lồi245 ft (75 m)[1]Vị tríNúi SugarloafVị trí tại FloridaVị tríQuậnLake, Florida,Hoa KỳDãy núiLake Wales RidgeTọa độ28°38′58″B 81°43′59″T / 28,6494413°B 81,7331317°T / 28.6494413; -81.7331317[2]Địa chấtTuổi đá~2.000.000 nămLeo núiHành trình dễ nhấtĐi bộ, đường lộ Núi Sugar...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Evil Ladytron song – news · newspapers · books · scholar · JSTOR (August 2016) (Learn how and when to remove this template message) 2003 single by LadytronEvilSingle by Ladytronfrom the album Light & Magic Released30 June 2003Recorded2003Genre Electrop...

 

Ini adalah nama Minahasa, marganya adalah Gerung. Rocky GerungLahir20 Januari 1959 (umur 64)Manado, Sulawesi Utara, IndonesiaKebangsaanIndonesiaAlmamaterUniversitas IndonesiaPekerjaanAkademikus, konten kreatorDikenal atasFilsafat kontemporer dan aktivis masyarakatInformasi YouTubeKanal Rocky Gerung Official Tahun aktif2019–sekarangGenreBeritaPelanggan1,84 juta[1](Hingga 2 Desember 2023[update])Total tayang322,757,350[1](Hingga 2 Desember...

Television channel Times Now NavbharatCountryIndiaBroadcast areaWorldwideHeadquartersNoida, Uttar Pradesh, IndiaProgrammingLanguage(s)HindiPicture format4:3 (576i, SDTV) 16:9 (1080i, HDTV)OwnershipOwnerThe Times GroupSister channelsTimes NowZoomET NowMovies NowRomedy NowMN+MNXMirror NowHistoryLaunched1 August 2021; 2 years ago (2021-08-01)LinksWebsitewww.timesnowhindi.comAvailabilityStreaming mediaLive StreamWatch Live Times Now Navbharat is a Hindi News TV Channel.[1 ...

 

American fictional character For the hotel chain founder, see Intown Suites. Soap opera character David VickersOne Life to Live characterPortrayed byTuc WatkinsDuration 1994–1996 2001–2013 First appearanceMay 6, 1994 (May 6, 1994)Last appearanceAugust 2013ClassificationFinal; regularCreated byMichael Malone and Josh GriffithIntroduced byLinda Gottlieb (1994)Gary Tomlin (2001)Jennifer Pepperman (2013)CrossoverappearancesAll My ChildrenIn-universe informationOt...

 

2008 compilation album by Various ArtistsWOW Gospel 2008Compilation album by Various ArtistsReleasedFebruary 12, 2008GenreCCM, GospelLabelVerity RecordsVarious Artists chronology WOW Gospel 2007(2007) WOW Gospel 2008(2008) WOW Gospel 2009(2009) Professional ratingsReview scoresSourceRatingAllmusic[1]The Phantom Tollbooth[2] WOW Gospel 2008 is a gospel music compilation album in the WOW series. Released on February 12, 2008, it comprises thirty-three songs on a double C...

Lena Hentschel Medallista olímpica Datos personalesNacimiento Berlín, Alemania17 de junio de 2001 (22 años)Carrera deportivaRepresentante de Alemania AlemaniaDeporte Salto               Medallero Salto femenino Evento O P B Juegos Olímpicos 0 0 1 Campeonato Mundial 0 0 1 Juegos Europeos 0 1 0 Campeonato Europeo 2 2 0 [editar datos en Wikidata] Lena Hentschel (Berlín, 17 de junio de 2001) es una depo...

 

I Prevail Основная информация Жанр пост-хардкорметалкорню-металкор Годы 2014 — настоящее время Страна  США Место создания СаутфилдМичиган Язык английский Лейбл Fearless Records Состав Брайан Буркейзер Эрик Ванлерберг Стив Меноян Дилан Боумен Бывшиеучастники Джордан Бергер Ли Р...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!