Square tiling

Square tiling
Square tiling
Type Regular tiling
Vertex configuration 4.4.4.4 (or 44)
Face configuration V4.4.4.4 (or V44)
Schläfli symbol(s) {4,4}
{∞}×{∞}
Wythoff symbol(s) 4 | 2 4
Coxeter diagram(s)




Symmetry p4m, [4,4], (*442)
Rotation symmetry p4, [4,4]+, (442)
Dual self-dual
Properties Vertex-transitive, edge-transitive, face-transitive

In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille.

The internal angle of the square is 90 degrees so four squares at a point make a full 360 degrees. It is one of three regular tilings of the plane. The other two are the triangular tiling and the hexagonal tiling.

Uniform colorings

There are 9 distinct uniform colorings of a square tiling. Naming the colors by indices on the 4 squares around a vertex: 1111, 1112(i), 1112(ii), 1122, 1123(i), 1123(ii), 1212, 1213, 1234. (i) cases have simple reflection symmetry, and (ii) glide reflection symmetry. Three can be seen in the same symmetry domain as reduced colorings: 1112i from 1213, 1123i from 1234, and 1112ii reduced from 1123ii.

This tiling is topologically related as a part of sequence of regular polyhedra and tilings, extending into the hyperbolic plane: {4,p}, p=3,4,5...

*n42 symmetry mutation of regular tilings: {4,n}
Spherical Euclidean Compact hyperbolic Paracompact

{4,3}

{4,4}

{4,5}

{4,6}

{4,7}

{4,8}...

{4,∞}

This tiling is also topologically related as a part of sequence of regular polyhedra and tilings with four faces per vertex, starting with the octahedron, with Schläfli symbol {n,4}, and Coxeter diagram , with n progressing to infinity.

*n42 symmetry mutation of regular tilings: {n,4}
Spherical Euclidean Hyperbolic tilings
24 34 44 54 64 74 84 ...4
*n42 symmetry mutations of quasiregular dual tilings: V(4.n)2
Symmetry
*4n2
[n,4]
Spherical Euclidean Compact hyperbolic Paracompact Noncompact
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
 
[iπ/λ,4]
Tiling
 
Conf.

V4.3.4.3

V4.4.4.4

V4.5.4.5

V4.6.4.6

V4.7.4.7

V4.8.4.8

V4.∞.4.∞
V4.∞.4.∞
*n42 symmetry mutation of expanded tilings: n.4.4.4
Symmetry
[n,4], (*n42)
Spherical Euclidean Compact hyperbolic Paracomp.
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]
*∞42
[∞,4]
Expanded
figures
Config. 3.4.4.4 4.4.4.4 5.4.4.4 6.4.4.4 7.4.4.4 8.4.4.4 ∞.4.4.4
Rhombic
figures
config.

V3.4.4.4

V4.4.4.4

V5.4.4.4

V6.4.4.4

V7.4.4.4

V8.4.4.4

V∞.4.4.4

Wythoff constructions from square tiling

Like the uniform polyhedra there are eight uniform tilings that can be based from the regular square tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, all 8 forms are distinct. However treating faces identically, there are only three topologically distinct forms: square tiling, truncated square tiling, snub square tiling.

Uniform tilings based on square tiling symmetry
Symmetry: [4,4], (*442) [4,4]+, (442) [4,4+], (4*2)
{4,4} t{4,4} r{4,4} t{4,4} {4,4} rr{4,4} tr{4,4} sr{4,4} s{4,4}
Uniform duals
V4.4.4.4 V4.8.8 V4.4.4.4 V4.8.8 V4.4.4.4 V4.4.4.4 V4.8.8 V3.3.4.3.4

Topologically equivalent tilings

An isogonal variation with two types of faces, seen as a snub square tiling with trangle pairs combined into rhombi.
Topological square tilings can be made with concave faces and more than one edge shared between two faces. This variation has 3 edges shared.

Other quadrilateral tilings can be made which are topologically equivalent to the square tiling (4 quads around every vertex).

A 2-isohedral variation with rhombic faces

Isohedral tilings have identical faces (face-transitivity) and vertex-transitivity, there are 18 variations, with 6 identified as triangles that do not connect edge-to-edge, or as quadrilateral with two collinear edges. Symmetry given assumes all faces are the same color.[1]

Isohedral quadrilateral tilings
Square
p4m, (*442)
Quadrilateral
p4g, (4*2)
Rectangle
pmm, (*2222)
Parallelogram
p2, (2222)
Parallelogram
pmg, (22*)
Rhombus
cmm, (2*22)
Rhombus
pmg, (22*)
Trapezoid
cmm, (2*22)
Quadrilateral
pgg, (22×)
Kite
pmg, (22*)
Quadrilateral
pgg, (22×)
Quadrilateral
p2, (2222)
Degenerate quadrilaterals or non-edge-to-edge triangles
Isosceles
pmg, (22*)
Isosceles
pgg, (22×)
Scalene
pgg, (22×)
Scalene
p2, (2222)

Circle packing

The square tiling can be used as a circle packing, placing equal diameter circles at the center of every point. Every circle is in contact with 4 other circles in the packing (kissing number).[2] The packing density is π/4=78.54% coverage. There are 4 uniform colorings of the circle packings.

There are 3 regular complex apeirogons, sharing the vertices of the square tiling. Regular complex apeirogons have vertices and edges, where edges can contain 2 or more vertices. Regular apeirogons p{q}r are constrained by: 1/p + 2/q + 1/r = 1. Edges have p vertices, and vertex figures are r-gonal.[3]

Self-dual Duals
4{4}4 or 2{8}4 or 4{8}2 or

See also

References

  1. ^ Tilings and patterns, from list of 107 isohedral tilings, p.473-481
  2. ^ Order in Space: A design source book, Keith Critchlow, p.74-75, circle pattern 3
  3. ^ Coxeter, Regular Complex Polytopes, pp. 111-112, p. 136.
  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8 p. 296, Table II: Regular honeycombs
  • Klitzing, Richard. "2D Euclidean tilings o4o4x - squat - O1".
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. p36
  • Grünbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns. New York: W. H. Freeman. ISBN 0-7167-1193-1. (Chapter 2.1: Regular and uniform tilings, p. 58-65)
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [1]
Space Family / /
E2 Uniform tiling 0[3] δ3 3 3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 4 4
E4 Uniform 4-honeycomb 0[5] δ5 5 5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 6 6
E6 Uniform 6-honeycomb 0[7] δ7 7 7 222
E7 Uniform 7-honeycomb 0[8] δ8 8 8 133331
E8 Uniform 8-honeycomb 0[9] δ9 9 9 152251521
E9 Uniform 9-honeycomb 0[10] δ10 10 10
E10 Uniform 10-honeycomb 0[11] δ11 11 11
En-1 Uniform (n-1)-honeycomb 0[n] δn n n 1k22k1k21

Read other articles:

  لمعانٍ أخرى، طالع أولاد أحمد (توضيح). أولاد أحمد تقسيم إداري البلد المغرب  الجهة فاس مكناس الإقليم تاونات الدائرة قرية با محمد الجماعة القروية سيدي العابد المشيخة سيدي عثمان السكان التعداد السكاني 115 نسمة (إحصاء 2004)   • عدد الأسر 17 معلومات أخرى التوقيت ت ع م±00:00 (تو

 

ギメ東洋美術館Musée national des Arts asiatiques-Guimet パリ内の位置施設情報専門分野 アジア美術開館 1879年所在地 フランス パリ 6, place d'Iéna 75116 Paris位置 北緯48度51分55秒 東経2度17分38秒 / 北緯48.86528度 東経2.29389度 / 48.86528; 2.29389アクセス イエナ駅外部リンク 公式ウェブサイトプロジェクト:GLAMテンプレートを表示 ギメ東洋美術館(ギメとうようびじゅつか...

 

Teka-teki kubus ular 27 kubus (Cubra Bafflin' Blue) diletakkan rata (atas) dan dikemas ke dalam kubus-kubus dengan lubang lurus yang diuraikan.[1] Kubus ular merupakan teka-teki mekanis yang terdiri dari rantai berjumlah 27 atau 64 kubus, dihubungkan dengan karet gelang yang melewatinya. Kubus dapat berputar. Tujuan dari teka-teki ini adalah mengatur agar rantai bisa membentuk kubus dengan ukuran 3x3x3 atau 4x4x4. Kubus yang belum terpecahkan (membentuk ular) kubus yang terpecahkan Va...

МершвеєрMerschweiller   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Тьйонвіль Кантон Сьєрк-ле-Бен Код INSEE 57459 Поштові індекси 57480 Координати 49°27′46″ пн. ш. 6°25′10″ сх. д.H G O Висота 185 - 431 м.н.р.м. Площа 5,76 км² Населення 289 (01-2020[1]) Густота 32,12 ос./...

 

Minority religion in the country of New Zealand Islam by countryWorld percentage of Muslims by country Africa Algeria Angola Benin Botswana Burkina Faso Burundi Cameroon Cape Verde Central African Republic Chad Comoros Democratic Republic of the Congo Republic of the Congo Djibouti Egypt Equatorial Guinea Eritrea Eswatini Ethiopia Gabon Gambia Ghana Guinea Guinea-Bissau Ivory Coast Kenya Lesotho Liberia Libya Madagascar Malawi Mali Mauritania Mauritius Mayotte Morocco Western Sahara Mozambiqu...

 

Annual college football all-star game This article is about the college football all-star game. For the team-competitive bowl game, see Hawaii Bowl. Hula Bowl StadiumFBC Mortgage Stadium (2022–present)LocationOrlando, Florida (2022–present)Previous stadiumsHonolulu Stadium (1960–1975)War Memorial Stadium (1998–2005)Aloha Stadium (1976–1997, 2006–2008, 2020–2021)Previous locationsHonolulu, Hawaii (1960–1975)Wailuku, Hawaii (1998–2005)Halawa, Hawaii (1976–1997, 2006–2008, ...

Опис файлу Опис Лого Верона (аеропорт) Джерело [1] Час створення 2018 Автор зображення Ліцензія Ця робота є невільною — тобто, не відповідає визначенню вільних творів культури. Згідно з рішенням фонду «Вікімедіа» від 23 березня 2007 року вона може бути використана у відпов

 

تحتاج هذه المقالة إلى تهذيب لتتناسب مع دليل الأسلوب في ويكيبيديا. فضلاً، ساهم في تهذيب هذه المقالة من خلال معالجة مشكلات الأسلوب فيها. (أبريل 2012) دير يوسف الإحداثيات 32°29′22″N 35°47′42″E / 32.48934°N 35.79505°E / 32.48934; 35.79505  تقسيم إداري  البلد الأردن[1]  رمز جيونيم...

 

село Кам'яне Країна  Україна Область Одеська область Район  Подільський район Громада Савранська селищна громада Код КАТОТТГ UA51120210110089796 Облікова картка Кам'яне (Подільський район)  Основні дані Засноване 1798 Населення 1425 Площа 5,24 км² Густота населення 271,95 о

American steamship For ships with a similar name, see SS President Roosevelt and USS Roosevelt. SS Roosevelt SS Roosevelt participating in a naval parade on the Hudson River as part of the Hudson-Fulton Anniversary Celebration in 1909. United States NameRoosevelt NamesakeTheodore Roosevelt OwnerPeary Arctic Club OperatorPeary Arctic Club BuilderMcKay and Dix Shipyard, [[Verona Island, Maine ]], Maine Laid down19 October 1904 Launched23 March 1905 Sponsored byMrs. Josephine Peary Complete...

 

American YouTube personality, singer and actor (born 1983) Chester SeeSee at Vidcon 2014BornChester Lionel Watch (1983-04-20) April 20, 1983 (age 40)EducationBA in Economics and Theater ArtsAlma materUCLAOccupation(s)Actor, musician, vloggerYears active2006–presentKnown forYouTube personality, singer, songwriterAwards2014 Streamy for Best Original SongWebsitechestersee.com/info/ Chester See (born Chester Lionel Watch April 20, 1983) is an American YouTuber, singer and ac...

 

Запрос «Налоговая инспекция» перенаправляется сюда. На эту тему нужно создать отдельную статью. Здание Межрегиональной инспекции федеральной налоговой службы по крупнейшим налогоплательщикам № 9, ФНС России; город Санкт-Петербург, улица Потёмкинская, дом № 2. Инс...

Friedrich-Wilhelm NeumannFelix Schwalbe (left), Friedrich-Wilhelm Neumann (middle) and Günther von Kluge (right) in April 1944 while visiting the Atlantic Wall in northern FranceBorn(1889-01-22)22 January 1889Died26 January 1975(1975-01-26) (aged 86)Allegiance Nazi GermanyService/branchArmy (Wehrmacht)RankGeneralleutnantCommands held 340. Infanterie-Division LXXXIX. Armeekorps 712. Infanterie-Division XXX. Armeekorps XXXIII.Armeekorps Battles/warsWorld War IIAwardsKnight's Cross of...

 

Mobile application for instant messaging Kik MessengerOriginal author(s)Kik Interactive Inc.Developer(s)MediaLab AI, Inc.Initial releaseOctober 19, 2010; 13 years ago (2010-10-19)Stable releaseAndroid15.50.1.27996[1]  / 17 March 2023; 8 months ago (17 March 2023)[2][3]iOS16.8.3[4]  / 25 February 2023; 9 months ago (25 February 2023)[5] Operating systemiOS 10 or later, Android 4.1 or laterAvailable in...

 

American actor (1933–2021) For other uses, see Robert Hogan (disambiguation). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Robert Hogan actor – news · newspapers · books · scholar · JSTOR (June 2021) (Learn how and when to remove this template message) Robert HoganHogan in an unsold television pilo...

Dutch runner Bram SomPersonal informationFull nameBram SomBorn (1980-02-20) 20 February 1980 (age 43)Terborg, NetherlandsHeight1.78 m (5 ft 10 in)Weight67 kg (148 lb) Medal record European Championships 2006 Gothenburg 800 metres Updated on 9 September 2009. Bram Som (born 20 February 1980, in Terborg) is a Dutch runner who specializes in the 800 metres. His personal best time of 1:43.45 minutes, achieved in August 2006 in Zürich, is also the current Dutch ...

 

Smil Flaška von Pardubitz (tschechisch: Smil Flaška z Pardubic; * 1349; † 13. August 1403 bei Kutná Hora) bekleidete hohe politische und königliche Ämter in Böhmen und betätigte sich auch als Schriftsteller. Inhaltsverzeichnis 1 Leben 2 Werke 3 Literatur 4 Weblinks Leben Smil Flaška von Pardubitz entstammte dem Adelsgeschlecht von Pardubitz. Sein Vater Wilhelm von Pardubitz (Vilém z Pardubic) war ein Bruder des ersten Prager Erzbischofs Ernst von Pardubitz. Smil studierte an der Pr...

 

В Википедии есть статьи о других людях с такой фамилией, см. Мамедов; Мамедов, Сергей. Сергей Валерьевич Мамедов Аудитор Счётной палаты Российской Федерации с 23 июня 2021 Член Совета Федерации Федерального собрания РФ — представитель в СФ ФС РФ от законодательного орган...

Level Up Project!Logo Level Up Project!GenreAcara realitasPemeranRed VelvetLagu pembukaMojito (Musim pertama)Look (Musim kedua)Hit That Drum (Musim ketiga)Jelly & Naughty (Musim keempat)Feel My Rhythm (Musim kelima)Negara asalKorea SelatanBahasa asliKoreaJmlh. musim5Jmlh. episode139 (per 9 September 2020)ProduksiLokasi produksiKorea SelatanPengaturan kameramulti-kameraRumah produksiSM Culture & ContentsRilis asliJaringanOksusuKBS JoyTrue IDXtvNJTBC4Wavve Level Up Project! (Hangul:...

 

Pierre Louis Parisis Pierre Louis Parisis (17 August 1795 – 1866) was the Roman Catholic bishop of the Bishopric of Langres in Haute-Marne, France, from 1835 to 1851.[1] In 1851, he succeeded Hugues de La Tour d'Auvergne-Lauragais as Bishop of Arras. Biography Parisis was born in 1795 in Orléans, the son of a baker. In 1819 he was ordained a priest for the diocese of Orléans. Bishop of Langres In 1834 he was appointed to succeed Jacques-Marie-Adrien-Césaire Mathieu as Bishop ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!