Люди та інші тварини мають спеціальні біохімічні шляхи для біосинтезу та розщеплення ліпідів, проте деякі з цих речовин є незамінними і мусять надходити в організм із їжею, наприклад ω-3 та ω-6 ненасичені жирні кислоти.
Термін «Ліпіди» був запропонований В. Блуром 17-18 ст.[2]
Класифікація ліпідів
Традиційно ліпіди поділяються на прості (естерижирних кислот зі спиртами) та складні (такі, що крім залишку жирної кислоти та спирту містять ще додаткові групи: вуглеводні, фосфатні та інші). До першої групи належать зокрема ацилгліцероли та воски, до другої — фосфоліпіди, гліколіпіди, також сюди можна віднести ліпопротеїни.[3][5] Ця класифікація не охоплює всю різноманітність ліпідів, тому частину з них виділяють в окрему групу попередників і похідних ліпідів (наприклад жирні кислоти, стероли, деякі альдегіди тощо).[3]
Сучасна номенклатура і класифікація ліпідів, що використовується в дослідженнях у галузі ліпідоміки, ґрунтується на поділі їх на вісім основних груп, кожна із яких скорочено позначається двома англійськими літерами:[6]
Кожна із груп поділяється на окремі підгрупи, що позначаються комбінацією із двох цифр.
Можлива також класифікація ліпідів на основі їх біологічних функцій, у такому разі можна виділити групи: запасні, структурні, сигнальні ліпіди, кофактори, пігменти тощо.[4]
Фізичні властивості
Тригліцериди — рідини або тверді речовини без запаху, смаку і кольору. Температура плавлення жирів залежить від того, які жирні кислоти входять до їх складу. Жири, у молекулах яких переважають залишки насичених кислот, — тверді, наприклад баранячий, яловичий жир; жири, у молекулах яких переважають залишки ненасичених кислот, — рідини, їх заведено називати оліями.
Жири майже нерозчинні у воді та добре розчинні в органічних розчинах, зокрема в етиловому і петролейному етерах. Жири легші за воду.
Для характеристики різних жирів, крім визначення температури їх плавлення, має значення визначення ще трьох характеристик, так званих чисел: кислотного, йодного та омилення.
Кислотне число — це кількість міліграмів калій гідроксиду (KOH), яка витрачається для нейтралізації вільних жирних кислот, що містять 1 г жиру.
Йодне число — це кількість грамів йоду, що може приєднатися (за місцем подвійних зв'язків) до 100 г жиру. Йодне число є мірою ненасиченості жирних кислот. Значення йодного числа використовують для оцінки якості висихаючих олій.
Число омилення — це кількість міліграмів калій гідроксиду, яка потрібна для омилення 1 г жиру. Значення числа омилення характеризують якість жиру: чим вище число омилення, тим нижча його якість.
Жирні кислоти — це карбонові кислоти, молекули яких містять від чотирьох до тридцяти шести атомів вуглецю. У складі живих організмів було виявлено більше двохсот сполук цього класу, проте значного поширення набули близько двадцяти. Молекули всіх природних жирних кислот містять парну кількість атомів вуглецю (це пов'язано із особливостями біосинтезу, який відбувається шляхом додавання двокарбонових одиниць), переважно від 12 до 24. Їх вуглеводневі ланцюжки зазвичай нерозгалужені, зрідка вони можуть містити трикарбонові цикли, гідроксильні групи або відгалуження.[3][4]
Залежно від наявності подвійних зв'язків між атомами вуглецю всі жирні кислоти поділяються на насичені, які їх не місять, і ненасичені, до складу яких входять подвійні зв'язки. Найпоширенішими із насичених жирних кислот в організмі людини є пальмітинова (C16) та стеаринова (C18).[3]
Ненасичені жирні кислоти зустрічаються в живих організмах частіше ніж насичені (близько 3/4 загального вмісту). У більшості з них спостерігається певна закономірність у розміщенні подвійних зв'язків: якщо такий зв'язок один, то він переважно знаходиться між 9-тим та 10-тим атомами вуглецю, додаткові подвійні зв'язки здебільшого з'являються у позиціях між 12-тим і 13-тим та між 15-тим і 16-тим вуглецем (винятком з цього правила є арахідонова кислота). Подвійні зв'язки у природних поліненасичених жирних кислотах завжди ізольовані, тобто між ними міститься хоча б одна метиленова група (-CH=CH-CH2-CH=CH-). Майже у всіх ненасичених жирних кислот, що зустрічаються в живих організмах, подвійні зв'язки перебувають у цис-конфігурації. До найпоширеніших ненасичених жирних кислот належать олеїнова, лінолева, ліноленова та арахідонова.
Наявність цис-подвійних зв'язків впливає на форму молекули жирних кислот (робить її менш компактною), а відповідно і на фізичні властивості цих речовин: ненасичені жирні кислоти у цис-формі мають нижчу температуру плавлення ніж відповідні транс-ізомери та насичені жирні кислоти[3].
Жирні кислоти зустрічаються в живих організмах переважно як залишки у складі інших ліпідів. Проте у невеликих кількостях вони можуть бути виявлені й у вільній формі.[5] Похідні жирних кислот ейкозаноїди відіграють важливу роль як сигнальні сполуки.
Ацилгліцериди (ацилгліцероли, гліцериди) — це естери триатомного спиртугліцеролу та жирних кислот. Залежно від кількості естерифікованих гідроксильних груп у молекулі гліцеролу вони поділяються на тригліцериди (триацилгліцероли), дигліцериди (диацилгліцероли) та моногліцериди (моноацилгліцероли). Найбільш розповсюджені тригліцериди, які ще мають емпіричну назву нейтральні жири або просто жири.
Жири можуть бути простими, тобто містити три однакові залишки жирних кислот, наприклад тристеарин або триолеїн, але частіше зустрічаються змішані жири, що містять залишки різних жирних кислот, наприклад 1-пальміто-2-олеолінолен. Фізичні властивості тригліцеридів залежать від жирнокислотного складу: чим більше вони містять залишків довгих ненасичених жирних кислот, тим більша в них температура плавлення, і навпаки — чим більше коротких ненасичених, тим вона менша. Загалом рослинні жири (олії) містять близько 95 % ненасичених жирних кислот, і тому за кімнатної температури перебувають у рідкому агрегатному стані. Тваринні жири, навпаки містять в основному насичені жирні кислоти (наприклад коров'яче масло складається в основному із тристеарину), тому за кімнатної температури тверді.[3][4]
Основною функцією ацилгліцеридів є те, що вони слугують для запасання енергії, і є найбільш енергоємким паливом клітини.[5]
Воски — це естери жирних кислот та вищих одноатомних або двоатомних спиртів, із кількістю атомів вуглецю від 16 до 30. Часто в складі восків зустрічається цетиловий (C16H33OH) та мірициловий (C30H61OH) спирти. До природних восків тваринного походження належить бджолиний віск, спермацет, ланолін, всі вони крім естерів містять ще деяку кількість вільних жирних кислот та спиртів, а також вуглеводнів із кількістю атомів вуглецю 21–35.
Хоча деякі види, наприклад певні планктоннімікроорганізми, використовують воски як форму запасання енергії, зазвичай вони виконують інші функції, зокрема забезпечення водонепроникності покривів як тварин, так і рослин.[4]
Стероїди — це група природних ліпідів, що містять у своєму складі циклопентанпергідрофенантренове ядро. Зокрема до цього класу сполук належать спирти із гідроксильною групою у третьому положенні — стероли (стерини) та їх естери із жирними кислотами — стериди[5]. Найпоширенішим стеролом у тварин є холестерол, що в неестерифікованому вигляді входить до складу клітинних мембран.[3]
Основною групою структурних ліпідів є фосфоліпіди, які в залежності від спирту, який входить до їх складу поділяються на гліцерофосфоліпіди та сфінгофосфоліпіди. Спільною ознакою фосфоліпідів є їхня амфіфільність: вони мають гідрофільну та гідрофобну частини. Така будова дозволяє їм утворювати у водному середовищі міцели та бішари, останні становлять основу біологічних мембран.
Гліцерофосфоліпіди
Гліцерофосфоліпіди (фосфогліцериди) — це похідні фосфатидної кислоти, що складається із гліцеролу, в якому перші дві гідроксильні групи естерифіковані жирними кислотами (R1 та R2), а третя — фосфатною кислотою. До фосфатної групи у третьому положенні приєднується радикал (Х), зазвичай азотвмісний. У природних фосфогліцеридів, у першому положенні найчастіше розміщений залишок насиченої жирної кислоти, а в другому — ненасиченої[4].
Залишки жирних кислот неполярні, тому вони утворюють гідрофобну частину молекули гліцерофосфоліпідів, так звані гідрофобні хвостики. Фосфатна група у нейтральному середовищі несе негативний заряд, в той час, як азотвмісна сполука — позитивний (деякі фосфогліцериди можуть містити також і негативно заряджений або нейтральний радикал), отже ця частина молекули полярна, вона утворює гідрофільну голову. У водному розчині фосфогліцериди утворюють міцели, в яких голови повернуті назовні (до водної фази), а гірофобні хвостики — всередину.[3]
Існують також безазотисті гліцерофосфоліпіди: наприклад фосфатидидінозитоли (радикал Х — циклічний шестиатомний спирт інозитол), що беруть участь у клітинному сигналюванні, та кардіоліпіни — подвійні фосфогліцериди (дві молекули фосфатидної кислоти з'єднані фосфатом), знайдені у внутрішній мембрані мітохондрій.[3]
До гліцерофосфоліпідів належать також плазмалогени, характерною ознакою будови цих речовин є те, що у них ацильний залишок біля першого атома вуглецю приєднаний не естерним, а етерним зв'язком. У хребетних тварин плазмалогенами, які ще називають етерними ліпідами, збагачена тканина серцевого м'яза. Також до цього класу сполук належить біологічно активна речовина фактор активації тромбоцитів.[4]
Сфінгофосфоліпіди
Сфінгофосфоліпіди (сфінгомієліни) складаються із цераміду, що містить один залишок довголанцюгового аміноспирту сфінгозину та один залишок жирної кислоти, та гірофільного радикалу, приєднаного до сфінгозину фосфодіестерним зв'язком. У ролі гірофільного радикалу найчастіше виступає холін або етаноламін. Сфінгомієліни зустрічаються у мембранах різних клітин, але найбагатша на них нервова тканина, особливо високий вміст цих речовин у мієліновій оболонціаксонів, звідки і походить їх назва.[3]
Гліколіпіди
Гліколіпіди — це клас ліпідів, що містять залишки моно- або олігосахаридів. Вони можуть бути як похідними гліцерину, так і сфінгозину.
Гліцерогліколіпіди
Гліцерогліколіпіди (глікозилгліцероли) — це похідні диацилгліцеролів, у яких, до третього атома вуглецю гліцеролу приєднаний глікозильним зв'язком моно- або олігосахарид. Найпоширенішими із цього класу сполук є галактоліпіди, що містять один або два залишки галактози. Вони становлять від 70 % до 80 % всіх ліпідів мембран тилакоїдів, через що є найбільш розповсюдженими мембранними ліпідами біосфери. Припускається, що рослини «замінили» фосфоліпіди гліколіпідами через те, що вміст фосфатів у ґрунті часто є лімітуючим чинником, а така заміна дозволяє скоротити потребу в ньому.[4]
Наряду із галактоліпідами у рослинних мембранах зустрічаються також сульфоліпіди, що містять залишок сульфатованої глюкози.[4]
Сфінгогліколіпіди
Сфінгогліколіпіди — містять церамід, а також один або кілька залишків цукрів. Цей клас сполук поділяють на кілька підкласів в залежності від будови вуглеводного радикала:
Цереброзиди — це сфінгогліколіпіди, гідрофільна частина яких представлена залишком моносахариду, зазвичай глюкози або галактози. Галактоцереброзиди поширені у мембранах нейронів.
Глобозиди — олігосахаридні похідні церамідів. Разом із цереброзидами їх називають нейтральними гліколіпідами, оскільки за pH 7 вони незаряджені.
Гангліозиди — найскладніші із гліколіпідів, їх гідрофільна частина представлена олігосахаридом, на кінці якого завжди розташований один або кілька залишків N-ацетилнейрамінової (сіалової) кислоти, через що вони мають кислотні властивості. Гангліозиди найбільш розповсюджені у мембранах гангліонарних нейронів[4][5].
Основні функції
Згідно з функціями ліпідів у живих організмах їх поділяють на запасні (резервні), що виконують функцію запасання енергії (переважно ацилгліцерини та триацилгліцероли), структурні, які утворюють складні комплекси з білками і вуглеводами, з яких побудові клітинних мембран (переважно фосфоліпіди та гліколіпіди, сульфоліпіди, а також холестерол) і клітинних структур та захисні. Проте функції ліпідів не обмежуються тільки цими двома, вони також можуть бути гормонами або іншими сигнальними молекулами, пігментами, емульгаторами, водовідштовхуючими речовинами покривів, забезпечувати термоізоляцію, зміну плавучості тощо.
Запасні ліпіди
Майже всі живі організми запасають енергію у формі жирів. Існують дві головні причини, через які саме ці речовини найкраще підходять для виконання такої функції. По-перше, жири містять залишки жирних кислот, рівень окиснення яких дуже низький (майже такий самий як у вуглеводнівнафти). Через це повне окиснення жирів до води і вуглекислого газу дозволяє отримати ніж вдвічі більше енергії, ніж окиснення тої ж маси вуглеводів. По-друге, жири гідрофобні сполуки, тому організм, що запасає енергію в такій формі, не повинен нести додаткової маси води необхідної для гідратації, як у випадку із полісахаридами, на 1 г яких припадає 2 г води. Проте тригліцериди це «повільніше» джерело енергії ніж вуглеводи.
Жири запасаються у формі крапель у цитоплазмі клітини. У хребетних наявні спеціалізовані клітини — адипоцити, майже цілком заповнені великою краплею жиру. Також багатим на тригліцериди є насіння багатьох рослин. Мобілізація жирів в адипоцитах та клітинах насіння, що проростає, відбувається завдяки ферментамліпазам, які розщеплюють їх до гліцеролу та жирних кислот.
У людей найбільша кількість жирової тканини розташована під шкірою (так звана підшкірна клітковина), особливо в районі живота та молочних залоз. Особі з легким ожирінням (15–20 кг тригліцеридів) таких запасів може вистачити для забезпечення енергією впродовж місяця, в той час як всього запасного глікогену вистачить менше ніж на добу.[4]
Жирова тканина, на ряду із енергетичним забезпеченням, виконує також і інші функції: захист внутрішніх органів від механічних ушкоджень; термоізоляція, особливо важлива для теплокровних тварин, що живуть у дуже холодних умовах, як-от тюлені, пінгвіни, моржі; жири також можуть бути джерелом метаболічної води, саме з такою метою використовують свої запаси тригліцеридів жителі пустель: верблюди, кенгурові щури (Dipodomys).[7]
Всі живі клітини оточені плазматичними мембранами, основним структурним елементом яких є подвійний шар ліпідів (ліпідний бішар). В 1 мкм² біологічної мембрани міститься близько мільйона молекул ліпідів.[8] Всі ліпіди, що входять до складу мембран, мають амфіфільні властивості: вони складають із гірофільної та гірофобної частин. У водному середовищі такі молекули спонтанно утворюють міцели та бішари внаслідок гідрофобних взаємодій, в таких структурах полярні голови молекул повернуті назовні до водної фази, а неполярні хвости — всередину, таке ж розміщення ліпідів характерне для природних мембран. Наявність гідрофобного шару дуже важлива для виконання мембранами їхніх функцій, оскільки він непроникний для іонів та полярних сполук.[4]
Ліпідний бішар біологічних мембран — це двовимірна рідина, тобто окремі молекули можуть вільно пересуватись одна відносно одної. Текучість мембран залежить від їх хімічного складу: наприклад, із збільшенням вмісту ліпідів, до складу яких входять поліненасичені жирні кислоти вона збільшується.[8]
Унікальним ліпідним складом характеризуються мембрани архей: вони складаються із так званих гліцерол диалкіл гілцерол тетраетерів (ГДГТ). Ці сполуки побудовані із двох довгих (близько 32 атомів вуглецю) розгалужених вуглеводнів, приєднаних на обох кінцях до залишків гліцеролу етерним зв'язком. Використання етерного зв'язку замість естерного, характерного для фосфо- і гліколіпідів, пояснюється тим, що він стійкіший до гідролізу за умов низьких значень pH та високої температури, що характерно для середовища, в якому зазвичай проживають археї. На кожному із кінців ГДГТ до гліцерину приєднано по одній гідрофільній групі. ГДГТ в середньому вдвічі довші за мембранні ліпіди бактерій та еукаріот, і можуть пронизувати мембрану наскрізь.[4]
Регуляторні ліпіди
Деякі із ліпідів відіграють активну роль у регулюванні життєдіяльності окремих клітин та організму в цілому. Зокрема, до ліпідів належать стероїдні гормони, що секретуються статевими залозами та корою наднирників. Ці речовини переносяться кров'ю по всьому організму і впливають на його функціонування.
Серед ліпідів є також і вторинні посередники — речовини, що беруть участь у передачі сигналу від гормонів чи інших біологічно активних речовин всередині клітини. Зокрема фосфатидилінозитол-4,5-біфосфат (ФІ(4,5)Ф2) задіяний у сигналюванні за участі G-білків, фосфатидилінозитол-3,4,5-трифосфат ініціює утворення супрамолекулярних комплексів сигнальних білків у відповідь на дію певних позаклітинних факторів, сфінголіпіди, такі як сфінгомієлін та цермаід, можуть регулювати активність протеїнкіназ.
Захисними ліпідами є насамперед воски та їхні похідні, що покривають поверхню листя, насіння плодів, а в окремих випадках і стебла рослин, як це спостерігається у цукровій тростині.
Інші функції
Частина вітамінів, тобто речовин, що необхідні для життєдіяльності організму у невеликих кількостях, належать до ліпідів. Їх об'єднують під назвою жиророзчинні вітаміни і розділяють на чотири групи: вітамін A, D, E і K. За хімічною природою всі ці речовини є ізопреноїдами. До ізопреноїдів також належать і переносники електронів убіхінон та пластохінон, що є частиною електронтранспортних ланцюгівмітохондрій та пластид відповідно.
Більшість ізопреноїдів містять кон'югованіподвійні зв'язки, через що в їхніх молекулах можлива делокалізація електронів. Такі сполуки легко збуджуються світлом, внаслідок чого вони мають колір видимий для людського ока. Багато організмів використовують ізопреноїди як пігменти для поглинання світла (наприклад, каротиноїди входять до світлозбиральних комплексів хлоропластів), а також і для спілкування з особинами свого або інших видів (наприклад, ізопреноїд зеаксантин надає пір'ю деяких птахів жовтого кольору).[4]
Ліпіди в дієті людини
Серед ліпідів у дієті людини переважають тригліцериди (нейтральні жири), вони є багатим джерелом енергії, а також необхідні для всмоктування жиророзчинних вітамінів. Насиченими жирними кислотами багата їжа тваринного походження: м'ясо, молочні продукти, а також деякі тропічні рослини, такі як кокос. Ненасичені жирні кислоти потрапляють в організм людини внаслідок вживання горіхів, насіння, оливкової та інших рослинних олій. Основними джерелами холестеролу в раціоні є м'ясо та органи тварин, яєчні жовтки, молочні продукти та риба. Проте близько 85 % відсотків холестеролу в крові синтезується печінкою.[9]
Організація American Heart Association рекомендує вживати ліпіди у кількості не більше 30 % від загального раціону, скоротити вміст насичених жирних кислот у дієті до 10 % від всіх жирів і не вживати більше 300 мг (кількість, що міститься в одному жовтку) холестеролу на добу. Метою цих рекомендацій є обмеження рівня холестеролу та тригліцеридів у крові до 20 мг/л.[9]
Жири посідають високу енергетичну цінність і виконують важливу роль у біосинтезі ліпідних структур, насамперед мембран клітин. Жири харчових продуктів представлені триглицеридами і ліпоїдними речовинами. Жири тваринного походження складаються з насичених жирних кислот з високою температурою плавлення. Рослинні жири містять значну кількість поліненасичених жирних кислот (ПНЖК).
Печінка відіграє ключову роль у метаболізмі жирних кислот, проте деякі з них вона синтезувати нездатна. Через це вони називаються незамінними, до таких зокрема належать ω-3 (ліноленова) та ω-6 (лінолева) поліненасичні жирні кислоти, вони містяться в основному в рослинних жирах. Ліноленова кислота є попередником для синтезу двох інших ω-3 кислот: ейозапентаеноєвої (EPA) та докозагексаеноєвої (DHA).[4] Ці речовини необхідні для роботи головного мозку, і позитивно впливають на конгітивні та поведінкові функції.[11]
Важливе також співвідношення ω-6:ω-3 жирних кислот у раціоні: рекомендовані пропорції лежать в межах від 1:1 до 4:1. Проте дослідження показують, що більшість жителів Північної Америки вживають в 10–30 разів більше ω-6 жирних кислот, ніж ω-3. Таке харчування пов'язане із ризиком виникнення серцево-судинних захворювань. Натомість «середземноморська дієта» вважається значно здоровішою, вона багата на ліноленову та інші ω-з кислоти, джерелом яких є зелені рослини (наприклад, листки салату) риба, часник, цілі злаки, свіжі овочі та фрукти. Як харчову добавку, що містить ω-з жирні кислоти рекомендується вживати риб'ячий жир.[4][11]
Більшість природних жирів містять ненасичені жирні кислоти із подвійними зв'язками у цис-конфігурації. Якщо їжа, багата на такі жири, довгий час перебуває у контакті із повітрям, вона гіркне. Цей процес пов'язаний з окисним розщепленням подвійних зв'язків, внаслідок якого утворюються альдегіди та карбонові кислоти із меншою молекулярною масою, частина з яких є леткими речовинами.
Для того, щоб збільшити термін зберігання та стійкість до високих температур тригліцеридів із ненасиченими жирними кислотами застосовують процедуру часткової гідрогенізації. Наслідком цього процесу є перетворення подвійних зв'язків в одинарні, проте побічним ефектом також може бути перехід подвійних зв'язків із цис- у транс-конфігурацію. Вживання так званих «транс жирів» має наслідком підвищення вмісту ліпопротеїнів низької густини («поганий» холестерол) і зниження вмісту ліпопротеїнів високої густини («добрий» холестерол) у крові, що призводить до збільшення ризику виникнення серцево-судинних захворювань, зокрема коронарної недостатності. Більше того, «транс жири» сприяють запальним процесам.
Негативний ефект «транс жирів» проявляється при вживанні 2–7 г на добу, така їх кількість може міситись в одній порції картоплі фрі смаженій на частково гідрогенізованій олії. Деякими законодавствами заборонено використання такої олії, наприклад у Данії, штаті Філадельфія та Нью-Йорк[4].
↑ абвгдГубський Ю.І. (2007). Біологічна хімія. Київ-Вінниця: Нова книга. с. 656. ISBN978-966-382-017-0. {{cite book}}: Cite має пустий невідомий параметр: |переклад= (довідка)
↑E.Fahy,S.Subramaniam, R.C. Murphy, M.Nishijima, C. R. H. Raetz, T. Shimizu, F. Spener, G. van Meer, M. J. O. Wakelam, E. A. Dennis (2005). Update of the LIPID MAPS comprehensive classification system for lipids (A comprehensive classification system for lipids). Journal of Lipid Research. 46(5): 839—61. doi:10.1002/ejlt.200405001. PMID15722563.
↑Тейлор Д., Грин Н., Стаут У. Биология: В 3-х т. Т.1: Пер.с англ./Под ред. Р.Сопера — 3-е изд. — М.:Мир,2004 —436с.
↑ абMarieb EN, Hoehn K (2006). Human Anatomy & Physiology (вид. 7th). Benjamin Cummings. ISBN978-0805359091.
↑Архівована копія. Архів оригіналу за 17 березня 2016. Процитовано 4 вересня 2013.{{cite web}}: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title (посилання)
Губський Ю.І (2007). Біологічна хімія. Київ-Вінниця: Нова кига. с. 94—114. Архів оригіналу за 23 січня 2021. Процитовано 27 березня 2016.
Органічна хімія: Підрч. вищ. навч. закл. / Л. Д. Бобрівник, В. М. Рудченко, Г. О. Лезенко. — К.; Ірпінь: ВТФ «Перун», 2005. — 544 с.
Процеси перекисного окиснення ліпідів у живих організмах : монографія / [Н. П. Головчак та ін.] ; Львів. нац. ун-т ім. Івана Франка. — Львів : ЛНУ ім. Івана Франка, 2012. — 249 с. : іл., табл. — ISBN 978-966-613-985-9
Latin alphabet of the Hungarian language For the non-Latin script descended from Old Turkic, see Old Hungarian script. Hungarian languageHungarian alphabet Alphabet ő ű cs dz dzs gy ly ny sz ty zs Grammar Noun phrases Verbs T–V distinction History Sound correspondences withother Uralic languages Other features Phonetics and phonology Vowel harmony Orthography Old Hungarian script Hungarian Braille Hungarian names Hungarian and English Hungarian pronunciation of English English words from ...
Em situações reais sobre quantidade da vida e sua taxa de variação depende mais de uma variável. Por exemplo, a população de coelhos, embora possa ser representado por um número único, depende do tamanho das populações de predadores e a disponibilidade de alimento. Para representar e estudar esses problemas complicados, precisamos usar mais de uma variável dependente e mais de uma equação. Sistemas de equações diferenciais são as ferramentas para se usar. Tal como acontece co...
Гренландская экспедиция Нансена Участники экспедиции во время перехода через ледник Страна Норвегия Дата начала 2 мая 1888 Дата окончания 30 мая 1889 Руководитель Фритьоф Нансен Состав 6 членов экспедиции, включая Отто Свердрупа Маршрут Предполагаемый первон
2023 soundtrack album by Anirudh Ravichander JawanSoundtrack album cover for JawanSoundtrack album by Anirudh RavichanderReleased6 September 2023Recorded2022–2023StudioAlbuquerque Records, ChennaiAM Studios, ChennaiYRF Studios, MumbaiStudio DMI, Las VegasGenreFeature film soundtrackLength25:29LanguageHindiLabelT-SeriesProducerAnirudh RavichanderAnirudh Ravichander chronology Jailer(2023) Jawan(2023) Leo(2023) External audio Official Audio Jukebox on YouTube Singles from Jawan Zinda Band...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) عافش - قرية - تقسيم إداري البلد اليمن المحافظة محافظة صنعاء المديرية مديرية بلاد الروس السك
Daily newspaper based in Stamford, Connecticut The AdvocateThe Advocate newspaper honor box in New Canaan, ConnecticutTypeDaily newspaperFormatBroadsheetOwner(s)Hearst CommunicationsPublisherMike DelucaEditorTom MellanaFounded1829, as The Stamford IntelligencerHeadquarters1055 Washington Blvd, Stamford, Connecticut, U.S.Circulation14,700 daily, 24,900 Sunday in 2010[1]Websitestamfordadvocate.com The Advocate is a seven-day daily newspaper based in Stamford, Connecticut. The paper is o...
Form of theatre originating in Italy Italian comedy redirects here. For the film genre, see Commedia all'italiana. A commedia dell'arte street play during the Carnival of Venice Commedia dell'arte Troupe on a Wagon in a Town Square by Jan Miel (1640) Commedia dell'arte (/kɒˈmeɪdiə dɛlˈɑːrteɪ, kə-, -ˈmɛdiə, -ˈɑːrtiː/;[1][2] Italian: [komˈmɛːdja delˈlarte]; lit. 'comedy of the profession')[3] was an early form of professional theatr...
UN General Assembly Resolution ES-10/21 United Nations resolution adopted in 2023 UN General AssemblyResolution ES-10/21 In favour Against Abstentions Absent Non memberDate27 October 2023Meeting no.10th Emergency Special Session (continuation)CodeA/RES/ES-10/21 (Document)SubjectProtection of civilians and upholding legal and humanitarian obligations.Voting summary121 voted for14 voted against44 abstainedResultAdopted United Natio...
Town in JapanTadaoka 忠岡町TownTadaoka Town Hall FlagSealLocation of Tadaoka in Osaka PrefectureTadaokaLocation in JapanCoordinates: 34°29′N 135°24′E / 34.483°N 135.400°E / 34.483; 135.400CountryJapanRegionKansaiKinkiPrefectureOsakaDistrictSenbokuGovernment • MayorKichie WadaArea • Total3.97 km2 (1.53 sq mi)Population (December 31, 2021) • Total16,793 • Density4,200/km2 (11,000/sq mi)Ti...
Film done outside of the major film studio system Filmmakers Stéphane Brizé (second from the right) and Rodrigo Moreno (second from the left) at a screening of The Measure of a Man in Buenos Aires in 2019 An independent film, independent movie, indie film, or indie movie is a feature film or short film that is produced outside the major film studio system in addition to being produced and distributed by independent entertainment companies (or, in some cases, distributed by major companies)....
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Amber TV series – news · newspapers · books · scholar · JSTOR (November 2023) (Learn how and when to remove this template message) Irish TV series or program AmberGenre Crime drama Thriller Created by Rob Cawley Paul Duane Written by Rob Cawley Gary D...
Municipal unit in Elbasan, AlbaniaShushicëMunicipal unitShushicëCoordinates: 41°6′N 20°9′E / 41.100°N 20.150°E / 41.100; 20.150Country AlbaniaCountyElbasanMunicipalityElbasanPopulation (2011) • Municipal unit8,731Time zoneUTC+1 (CET) • Summer (DST)UTC+2 (CEST) Shushicë is a village and a former municipality in the Elbasan County, central Albania. At the 2015 local government reform it became a subdivision of the municipality...
Australian businessman Peter ArcherAs ′Parsons′, in the film Enter the DragonBornPeter Ian Archer(1948-07-08)8 July 1948Rockhampton, Queensland, AustraliaDied13 April 2000(2000-04-13) (aged 51)Sydney, New South Wales, AustraliaOccupation(s)Actor, martial artist, CEO of Jackel AustraliaYears active1969−1998 Peter Ian Archer (8 July 1948 – 13 April 2000) was an Australian entrepreneur and martial arts champion. He appeared as Parsons in the martial-arts movie Enter the Dragon ...
Elected official Treasurer of IllinoisSeal of IllinoisIncumbentMike Frerichssince January 12, 2015Term lengthFour years, no term limitsInaugural holderJohn ThomasFormationOctober 2, 1818 (1818-10-02)Salary$135,669 (2016)[1]Websiteillinoistreasurer.gov The Treasurer of Illinois is an elected official of the U.S. state of Illinois. The office was created by the Constitution of Illinois. Current Occupant The current Treasurer of Illinois is Democrat Mike Frerichs. He ...
Japanese politician Bin Akao赤尾敏Akao in 1942Member of the House of Representatives of Japan for Tokyo 6th districtIn officeMay 1, 1942 – December 18, 1945 Personal detailsBorn(1899-01-15)January 15, 1899Higashi-ku, Nagoya, JapanDiedFebruary 6, 1990(1990-02-06) (aged 91)Toshima-ku, Tokyo, JapanPolitical partyIndependent (1942–1945) Greater Japan Patriotic Party (1951–1990) Bin Akao (赤尾敏, Akao Bin, 15 January 1899 – 6 February 1990), was a Japanese far-right pol...
В Википедии есть статьи о других людях с именем Тиверий|Тиберий (значения)|Тиверий. Тиверий IIITiberius IIIΤιβέριος Γʹ Тиверий III на монете Византийский император 698 — 705 Предшественник Леонтий Преемник Юстиниан II Рождение VII век Смерть 15 февраля 706(0706-02-15)Константинополь Отно...
John GarstangJohn Garstang pada usia 80 (Juli 1956)Lahir(1876-05-05)5 Mei 1876Blackburn, InggrisMeninggal12 September 1956(1956-09-12) (umur 80)Beirut, LebanonKebangsaanBritania RayaKarier ilmiahBidangArkeologiInstitusiUniversitas Liverpool John Garstang (5 Mei 1876 – 12 September 1956) adalah seorang arkeolog asal Inggris yang berspesialisasi di Timur Dekat kuno, terutama Anatolia dan bagian selatan Levant. Dia adalah adik dari Profesor Walter Garstang, FRS, seorang ahli...
Ring road around the center of Beijing, China This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: 3rd Ring Road Beijing – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) 3rd Ring Road in Shuangjing Subdistrict Interchange between the 3rd Ring R...
Former municipality in Rogaland, Norway For other uses, see Hetland (disambiguation). Former municipality in Rogaland, NorwayHetland Municipality Hetland kommuneFormer municipalityView of Grødem village Rogaland within NorwayHetland within RogalandCoordinates: 58°53′32″N 05°44′01″E / 58.89222°N 5.73361°E / 58.89222; 5.73361CountryNorwayCountyRogalandDistrictJærenEstablished1 Jan 1838 • Created asFormannskapsdistriktDisestablished1 Jan 1965...
Anton van Dyck, retrato de Theodoor Rombouts, hacia 1632. Múnich, Alte Pinakothek. Theodoor Rombouts (Amberes, 2 de julio de 1597-14 de septiembre de 1637) fue un pintor barroco flamenco especializado en los temas de género cuyos protagonistas más frecuentes son músicos y jugadores de cartas a la manera de los pintores caravaggistas nórdicos establecidos en Roma, de los que Rombouts será uno de los más caracterizados representantes.[1] Biografía Nacido en Amberes, Rombouts fue ...