Согласно Математической энциклопедии, спиралями называются плоские кривые, которые «обычно обходят вокруг одной (или нескольких точек), приближаясь или удаляясь от неё». Это толкование термина не является строго формализуемым определением. Если какая-то известная кривая содержит в названии эпитет «спираль», то к этому следует относиться как к исторически сложившемуся названию.
Один из вариантов строгого определения, предполагающий монотонность полярного уравнения кривой, не универсален: выбрав другой полюс, можно нарушить имеющуюся монотонность, и только из-за этого кривая «перестанет быть спиралью», при том, что сама она не изменилась. У спирали Котеса[англ.] полярное уравнение немонотонно, а спираль Корню имеет два полюса и поэтому не описывается целиком в полярных координатах.
Формальное определение спирали, основанное на монотонности кривизны, принято в монографии[1] (глава 3-3, Spiral Arcs). При этом требуется непрерывность кривизны k ( s ) {\displaystyle k(s)} как функции длины дуги кривой, и рассматриваются только выпуклые кривые[2]. Спиралью в этом смысле является четвертинка эллипса (между двумя соседними вершинами). Интерес к таким кривым был во многом связан с теоремой о четырёх вершинах овала, утверждающей (в терминах обсуждаемого определения), что простая замкнутая кривая с непрерывной кривизной состоит как минимум из четырёх спиральных дуг.
Именно такие определения, с теми или иными уточнениями о выпуклости, строгой/нестрогой монотонности, непрерывности и знакопостоянстве кривизны, ограничениями на полный поворот кривой, используются в приложениях из области автоматизированного проектирования. Основные приложения связаны с конструированием скоростных дорог, в частности, построением переходных кривых, обеспечивающих постепенное изменение кривизны вдоль пути.
Более общее определение, не требующее знакопостоянства и непрерывности кривизны, а лишь её монотонности, принято в статье[3]. В рамках этого определения свойство кривой быть спиралью инвариантно относительно дробно-линейных отображений кривой.
Окружность можно считать вырожденным частным случаем спирали (кривизна не строго монотонна, а является константой).
Некоторые из наиболее важных типов двумерных спиралей:
Как и в двумерном случае, r — непрерывную монотонную функцию от θ.
Для простых трёхмерных спиралей третья переменная h — также непрерывная монотонная функция от θ. Например, коническая винтовая линия может быть определена как спираль на конической поверхности с расстоянием от вершины как экспоненциальной функцией от θ.
Для сложных трёхмерных спиралей, как, например, сферическая спираль, h возрастает с ростом θ с одной стороны от точки и убывает — с другой.
Сферическая спираль (локсодрома) — это кривая на сфере, пересекающая все меридианы под одним углом (не прямым). Эта кривая имеет бесконечное число витков. Расстояние между ними убывает по мере приближения к полюсам.