Точка параболы, ближайшая к её директрисе, называется вершиной этой параболы. Вершина является серединой перпендикуляра, опущенного из фокуса на директрису.
Число p называется фокальным параметром, оно равно расстоянию от фокуса до директрисы[3]. Поскольку каждая точка параболы равноудалена от фокуса и директрисы, то и вершина — тоже, поэтому она лежит между фокусом и директрисой на расстоянии от обоих.
Вывод
Уравнение директрисы PQ: , фокус F имеет координаты Таким образом, начало координат O — середина отрезка CF. По определению параболы, для любой точки M, лежащей на ней, выполняется равенство KM = FM. Далее, поскольку и , то равенство приобретает вид:
После возведения в квадрат и некоторых преобразований получается равносильное уравнение
Парабола, заданная квадратичной функцией
Квадратичная функция при также является уравнением параболы и графически изображается той же параболой, что и но в отличие от последней имеет вершину не в начале координат, а в некоторой точке A, координаты которой вычисляются по формулам:
Ось симметрии параболы, заданной квадратичной функцией, проходит через вершину параллельно оси ординат. При a > 0 (a < 0) фокус лежит на этой оси над (под) вершиной на расстоянии 1/4a, а директриса — под (над) вершиной на таком же расстоянии и параллельна оси абсцисс. Уравнение может быть представлено в виде а в случае переноса начала координат в точку A уравнение параболы превращается в каноническое. Таким образом, для каждой квадратичной функции можно найти систему координат такую, что в этой системе уравнение соответствующей параболы представляется каноническим. При этом
Общее уравнение параболы
В общем случае парабола не обязана иметь ось симметрии, параллельную одной из координатных осей. Однако, как и любое другое коническое сечение, парабола является кривой второго порядка и, следовательно, её уравнение на плоскости в декартовой системе координат может быть записано в виде квадратного многочлена:
Если кривая второго порядка, заданная в таком виде, является параболой, то составленный из коэффициентов при старших членах дискриминант равен нулю.
Уравнение в полярной системе
Парабола в полярной системе координат с центром в фокусе и нулевым направлением вдоль оси параболы (от фокуса к вершине) может быть представлена уравнением
где p — фокальный параметр (расстояние от фокуса до директрисы или удвоенное расстояние от фокуса до вершины)
Уравнение в подерной системе
Парабола в подерной системе координат с центром в фокусе и параметром , равным расстоянию от фокуса до вершины параболы, может быть представлена следующим уравнением[4]:
Расчёт коэффициентов квадратичной функции
Если для уравнения параболы с осью, параллельной оси ординат, известны координаты трёх различных точек параболы то его коэффициенты могут быть найдены так:
Если же заданы вершина и старший коэффициент , то остальные коэффициенты и корни вычисляются по формулам:
Она имеет ось симметрии, называемой осью параболы. Ось проходит через фокус и вершину перпендикулярно директрисе.
Оптическое свойство. Пучок лучей, параллельных оси параболы, отражаясь в параболе, собирается в её фокусе. И наоборот, свет от источника, находящегося в фокусе, отражается параболой в пучок параллельных её оси лучей. Сигнал также придет в одной фазе, что важно для антенн.
Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе.
Множество всех точек, из которых парабола видна под прямым углом, есть директриса.
Отрезок, соединяющий середину произвольной хорды параболы и точку пересечения касательных к ней в концах этой хорды, перпендикулярен директрисе, а его середина лежит на параболе.
если полюс совпадает с фокусом параболы, то подера состоит из трёх прямых на комплексной проективной плоскости:
действительной прямой, которая касается параболы в её вершине;
две мнимые прямые, которые пересекаются в фокусе параболы.
Вариации и обобщения
Графики степенной функции при натуральном показателе называются параболами порядка[10][11]. Ранее рассмотренное определение соответствует то есть параболе 2-го порядка.
Для создания невесомости в земных условиях проводятся полёты самолётов по параболической траектории, так называемой параболе Кеплера.
При отсутствии сопротивления воздуха траектория полёта тела в приближении однородного гравитационного поля представляет собой параболу.
Также параболические зеркала используются в любительских переносных телескопах систем Кассегрена, Шмидта — Кассегрена, Ньютона, а в фокусе параболы устанавливают вспомогательные зеркала, подающие изображение на окуляр.
При вращении сосуда с жидкостью вокруг вертикальной оси поверхность жидкости в сосуде и вертикальная плоскость пересекаются по параболе.
Свойство параболы фокусировать пучок лучей, параллельных оси параболы, используется в конструкциях прожекторов, фонарей, фар, а также телескопов-рефлекторов (оптических, инфракрасных, радио- …), в конструкции узконаправленных (спутниковых и других) антенн, необходимых для передачи данных на большие расстояния, солнечных электростанций и в других областях.
Форма параболы иногда используется в архитектуре для строительства крыш и куполов.
Параболическая орбита и движение спутника по ней (анимация)