Простые конечные группы — «элементарные кирпичики», из которых можно построить любую конечную группу, так же, как любое натуральное число можно разложить в произведение простых. Теорема Жордана — Гёльдера является более точным способом выражения этого факта для конечных групп. Однако существенное отличие от факторизации целых чисел заключается в том, что такие «кирпичики» не будут определять группу однозначно, так как может существовать множество неизоморфных групп с теми же композиционными рядами[англ.].
Теорема считается доказанной в серии работ примерно 100 авторов, опубликованных в основном с 1955 по 2004 годы и содержащих в общей сложности тысячи страниц текста. Ричард Лайонс[англ.], Рональд Соломон[англ.] и (ранее) Дэниел Горенстейн[англ.] постепенно публикуют упрощённую и пересмотренную версию доказательства.
Теорема классификации находит применение во многих областях математики, так как вопросы о структуре конечных групп (и их действия на другие математические объекты) могут быть иногда сведены к вопросам о конечных простых группах. Благодаря теореме о классификации на такие вопросы можно иногда ответить, проверив каждое семейство простых групп и каждую спорадическую группу.
исключительные и скрученные формы групп типа Ли (включая группу Титса).
Обзор доказательства теоремы классификации
Горенстейн[1][2] написал двухтомник с набросками доказательства для низких рангов и нечётных характеристик, а Ашбахер[3] написал 3-й том, покрывающий оставшиеся случаи характеристики 2. Доказательство можно разбить на несколько основных частей:
Группы малого 2-ранга
Простые группы низкого 2-ранга являются, в основном, группами лиева типа с малым рангом над полями нечётной характеристики, наряду с пятью знакопеременными группами, семью группами характеристического типа 2 и девятью спорадическими группами.
Группы 2-ранга 1. Силовские 2-подгруппы являются либо циклическими, с которыми легко работать с использованием функций перехода, либо обобщёнными кватернионами, с которыми работают при помощи теоремы Брауэра — Судзуки[англ.]. В частности, не существует простых групп 2-ранга 1.
Группы 2-ранга 2. Альперин показал, что силовская подгруппа должна быть диэдральной, квазидиэдральной, сплетённой или силовской 2-подгруппой группы U3(4). Первый случай покрывает теорема Горенстейна — Уолтера[англ.], которая показывает, что только простые группы изоморфны L2(q) для нечётных q, или группе A7. Второй и третий случаи покрывает теорема Альперина — Брауэра — Горенстейна, из которой вытекает, что только простые группы изоморфны или для нечётных q, или группе M11. Последний случай покрывает Лайонс, показавший, что является единственной простой возможностью.
Классификация групп малого 2-ранга, особенно рангов, не превосходящих 2, интенсивно использует обычную и модулярную теорию характеров, которая почти нигде не применяется явно в других местах классификации.
Все группы за пределами малых 2-рангов можно разбить на два больших класса — группы компонентного типа и группы характеристического типа 2. Если группа имеет секционный 2-ранг, не меньший 5, МакВильямс показал, что её силовские 2-подгруппы связны, а из теоремы баланса[англ.] следует, что любая простая группа со связной силовской 2-подгруппой либо является группой компонентного типа, либо группой характеристического типа 2. (Для групп низкого 2-ранга доказательство этого не проходит, поскольку теоремы, такие как теорема о сигнализаторном функторе[англ.], работают только для групп с элементарными абелевыми подгруппами ранга по меньшей мере 3.)
Группы компонентного типа
Говорят, что группа является группой компонентного типа, если для некоторого централизатора C инволюции C/O(C) имеет компоненту (квазипростую субнормальную подгруппу; здесь O(C) — ядро C, максимальная нормальная подгруппа нечётного порядка).
Они представлены в основном группами лиева типа нечётной характеристики с большим рангом и знакопеременными группами, а также некоторыми спорадическими группами.
Главный шаг в данном случае — исключить препятствие с ядром инволюции. Делается это с помощью B-теоремы[англ.], которая утверждает, что любая компонента C/O(C) является образом компоненты ядра C.
Идея заключается в том, что эти группы имеют централизатор инволюции с компонентой, являющейся меньшей квазипростой группой, которая может считаться уже известной по индукции. Так что для классификации этих групп можно взять каждое центральное расширение каждой известной конечной простой группы и найти все простые группы с централизатором инволюции с этой группой в качестве компоненты. Это даёт огромное число различных случаев, требующих проверки — помимо того, что имеются 26 спорадических групп, 16 семейств групп лиева типа и знакопеременные группы, ещё и многие группы малого ранга или над малыми полями ведут себя отлично от основного случая и должны быть рассмотрены отдельно. Кроме того, группы лиева типа чётной и нечётной характеристики также ведут себя по-разному.
Группы характеристического типа 2
Группа имеет характеристический тип 2, если обобщённая группа Фиттинга[англ.]F*(Y) любой 2-локальной подгруппы Y является 2-группой. Как подсказывает название, эти группы, грубо говоря, являются группами лиева типа над полями характеристики 2, плюс некоторое количество других групп, знакопеременных, спорадических или нечётной характеристики. Классификация этих групп делится на случаи большого и малого ранга, где ранг — наибольший ранг нечётной абелевой подгруппы, нормализующей нетривиальную 2-подгруппу, и этот ранг часто (но не всегда) является рангом подалгебры Картана, когда группа является группой лиева типа характеристики 2.
Группы ранга 1 — это тонкие группы, классифицированные Ашбахером, а группы ранга 2 — это доставившие немало проблем квазитонкие группы[англ.], классифицированные Ашбахером и Смитом. Они, грубо говоря, соответствуют группам лиева типа рангов 1 или 2 над полями характеристики 2.
Группы ранга 3 и выше делятся на три класса согласно теореме о трихотомии[англ.], доказанной Ашбахером для ранга 3 и Горенстейном с Лайонсом для ранга 4 и выше.
Эти три класса: группы типа GF(2) (в основном классифицированные Тиммесфельдом), группы «стандартного типа» для некоторых нечётных простых (классифицированы теоремой Гилмана — Гриса и работами некоторых других авторов) и группы «уникального» (uniqueness) типа, для которых из результата Ашбахера вытекает, что среди них нет простых групп.
Случай общего высокого ранга представляют большей частью группы лиева типа над полями характеристики 2 с рангом по меньшей мере 3 или 4.
Существование и единственность простых групп
Большая часть классификации даёт описание каждой простой группы. Необходимо проверить, что существует простая группа для каждого описанного случая и что она единственна. Это даёт большое число дополнительных проблем. Например, оригинальные доказательства существования и единственности Монстра занимают около 200 страниц, а идентификация групп Ри Томпсоном и Бомбиери была одной из труднейших частей классификации. Многие из доказательств существования и некоторые из доказательств единственности для спорадических групп первоначально использовали компьютерные вычисления, большинство из которых затем были заменены более короткими доказательствами, сделанными вручную.
История вопроса
Программа Горенстейна
В 1972 году Горенстейн[4] объявил программу завершения классификации конечных простых групп, состоящую из следующих 16 шагов:
Группы низкого 2-ранга. По существу, это было сделано Горенстейном и Харадой, которые классифицировали группы с секционным 2-рангом, не превосходящим 4. Большинство случаев 2-ранга, не превосходящего 2, уже было сделано к тому времени Горенстейном, объявившим программу.
Полупростота 2-слоёв. Задача заключается в доказательстве, что 2-слой централизатора инволюции в простой группе является полупростым.
Стандартная форма при нечётной характеристике. Если группа имеет инволюцию с 2-компонентой, являющейся группой лиева типа с нечётной характеристикой, нужно показать, что группа имеет централизатор инволюции в «стандартной форме», что означает, что централизатор инволюции имеет компоненту лиева типа с нечётной характеристикой и имеет централизатор с 2-рангом 1.
Классификация групп нечётного типа. Задача заключается в доказательстве, что если группа имеет централизатор инволюции в «стандартной форме», то эта группа является группой лиева типа с нечётной характеристикой. Задачу решил Ашбахер, доказав классическую теорему об инволюции[англ.].
Квазистандартная форма
Центральные инволюции
Классификация знакопеременных групп
Некоторые спорадические группы
Тонкие группы. Простые тонкие конечные группы с 2-локальным p-рангом, не превосходящим 1 для нечётных простых p, классифицировал Ашбахер в 1978
Группы со строго p-вложенной подгруппой для нечётных p
Метод сигнализаторного функтора для нечётных простых чисел. Главная задача — доказать теорему о сигнализаторном функторе[англ.] для неразрешимых сигнализаторных функторов. Задачу решил Макбрайд в 1982.
Группы характеристического типа p. Это задача о группах со строго p-вложенной 2-локальной подгруппой для нечётного p, которую решил Ашбахер.
Квазитонкие группы. Квазитонкая группа[англ.] — это группа, 2-локальные подгруппы которой имеют p-ранг, не превосходящий 2, для всех нечётных простых p. Задача заключается в классификации таких простых групп с характеристическим типом 2. Задачу выполнили Ашбахер и Смит в 2004 году.
Группы низкого 2-локального 3-ранга. Задача была, по существу, уже решена теоремой о трихотомии[англ.] Ашбахера для групп с e(G)=3. Главное изменение заключалось в замене 2-локального 3-ранга на 2-локальный p-ранг для нечётных простых чисел.
Классификация простых групп с характеристическим типом 2. Эта часть классификации была выполнена с помощью теоремы Гилмана — Гриса[англ.], в которой 3-элементы были заменены на p-элементы для нечётных простых чисел.
Горенстейн объявил в 1983 году, что все конечные простые группы классифицированы, но заявление было преждевременным, так как он был недостаточно осведомлён относительно классификации квазитонких групп[англ.]. Об окончательном завершении доказательства объявил Ашбахер[5] в 2004 году после того, как он вместе со Смитом опубликовал 1221-страничное доказательство для недостававшего квазитонкого случая.
Хронология доказательства
Большая часть информации в списке взята из статьи Соломона[6]. Приведённые даты, как правило, являются датой публикации полного доказательства результата. Эта дата иногда на несколько лет позже доказательства или первого объявления результата, так что может показаться, что события идут в «неверном» порядке.
Дата публикации
1832
Галуа вводит нормальные подгруппы и находит простые группы An () и PSL2(Fp) ()
Отто Гёльдер доказывает, что порядок любой неабелевой конечной простой группы должен быть произведением по меньшей мере четырёх (не обязательно различных) простых чисел и ставит вопрос о классификации конечных простых групп.
1893
Коул классифицирует простые группы с порядком до 660
Бёрнсайд классифицирует простые группы, в которых централизатор любой инволюции является нетривиальной элементарной абелевой 2-группой.
1901
Фробениус доказывает, что группа Фробениуса имеет ядро Фробениуса, так что она не является простой.
1901
Леонард Диксон определяет классические группы над произвольными конечными полями и исключительные группы типа G2 над полями с нечётной характеристикой.
1901
Диксон вводит исключительные конечные простые группы типа E6.
1904
Бёрнсайд использует теорию характеров для доказательства теоремы Бёрнсайда, что порядок любой неабелевой простой группы должен делиться по меньшей мере на 3 различных простых числа.
1905
Диксон вводит простые группы типа G2 над полями с чётной характеристикой
1911
Бёрнсайд высказывает гипотезу, что любая неабелева конечная простая группа имеет чётный порядок
Брауэр описывает p-модулярные характеры групп, порядок которых делится на p, но не на p2.
1954
Брауэр классифицирует простые группы с централизатором инволюции GL2(Fq).
1955
Из теоремы Брауэра — Фаулера[англ.] следует, что число конечных простых групп с заданным централизатором инволюции конечно, что даёт повод для попытки классификации с использованием централизаторов инволюций.
1955
Шевалле вводит группы Шевалле, в частности, исключительные простые группы типов F4, E7 и E8.
Штейнберг ввёл группы Штейнберга, что дало новые конечные простые группы типов 3D4 и 2E6 (вторую из них почти в то же время нашёл независимо Жак Титс).
1959
Теорема Брауэра — Судзуки[англ.] о группах с обобщёнными кватернионными силовскими 2-подгруппами показала, что среди них нет простых групп.
1960
Томпсон доказал, что группа с автоморфизмами без неподвижных точек простого порядка нильпотентна.
1960
Фейт, Холл и Томпсон показывают, что все конечные простые CN-группы[англ.] нечётного порядка цикличны.
МакВильямс показал, что 2-группы без нормальных абелевых подгрупп ранга 3 имеют секционный 2-ранг, не превосходящий 4. (Простые группы с силовскими подгруппами, удовлетворяющие последнему условию, позже классифицировали Горенстейн и Харада.)
Теорема Альперина — Брауэра — Горенстейна[англ.] классифицирует группы с квазидиэдральными или скрученными силовскими 2-подгруппами, завершая тем самым классификацию простых групп с 2-рангом, не превосходящим 2
Томпсон классифицирует N-группы — группы, в которых все локальные подгруппы разрешимы.
1974
Теорема Горенстейна — Харады[англ.] классифицирует простые группы, секционные 2-ранги которых не превосходят 4, деля тем самым оставшиеся конечные простые группы на группы компонентного типа и группы характеристического типа 2.
1974
Титс показывает, что группы с парами (B, N) ранга, не меньшего 3, являются группами лиева типа
Ашбахер доказывает теорему о компонентах[англ.], показывая, что группы нечётного типа, удовлетворяющие некоторым условиям, имеют компоненту в стандартной форме. Группы с компонентой в стандартной форме были классифицированы в большой совокупности статей различных авторов.
Ашбахер описывает группы лиева типа с нечётной характеристикой в своей классической теореме об инволюции[англ.]. После этой теоремы, которая, в некотором смысле, имеет дело с «большинством» простых групп, наступило чувство, что конец классификации не за горами.
Теорема Гилмана — Гриса[англ.] классифицирует группы характеристического типа 2 и ранга по меньшей мере 4 со стандартными компонентами, одним из трёх случаев теоремы о трихотомии.
1983
Ашбахер доказывает, что никакая конечная группа не удовлетворяет гипотезе уникальности[англ.], одному из трёх случаев теоремы о трихотомии для групп характеристического типа 2.
1983
Горенстейн и Лайонс доказывают теорему о трихотомии[англ.] для групп характеристического типа 2 и ранга, не меньшего 4, в то время как Ашбахер доказывает её для ранга 3. Это делит такие группы на 3 подкласса — случай уникальности, группы типа GF(2) и группы со стандартными компонентами.
1983
Горенстейн объявляет о завершении доказательства теоремы классификации. Несколько преждевременно, поскольку доказательство для квазитонкого случая не завершено.
1994
Горенстейн, Лайонс и Соломон начинают публикацию пересмотренной классификации
2004
Ашбахер и Смит публикуют работу о квазитонких группах[англ.] (которые являются, главным образом, группами лиева типа ранга 2 и выше над полями с чётной характеристикой), заполняя последний пробел в классификации, известный на то время.
2008
Харада и Соломон заполняют небольшой пробел в классификации описанием групп со стандартной компонентой, которая покрывает группу Матьё M22[англ.]. Этот случай был случайно пропущен в доказательстве классификации ввиду ошибки при вычислении мультипликатора Шура для M22.
Доказательство теоремы на момент примерно 1985 года можно назвать первым поколением. Ввиду крайне большой длины доказательства первого поколения и разрозненности входящих в него материалов ведётся большая работа по созданию единого и более простого доказательства, названного доказательством классификации второго поколения; это направление также известно как «ревизионизм». Эту работу ведут Ричард Лайонс и Рональд Соломон, а также вёл Дэниел Горенстейн[англ.] до своей смерти в 1992 году. Они выпускают доказательство в виде серии книг, иногда называемой GLS по фамилиям авторов. К работе над последними томами также присоединились Инна Капдебоск и Гернот Строт[8].
Содержащееся в серии GLS доказательство не полностью автономно, оно опирается на некоторые другие работы, в том числе двухтомник The classification of quasithin groups Ашбахера и Смита[9], посвящённый квазитонкому случаю[10].
К 2023 году готово десять томов серии➤; планируется, что всего будет опубликовано 12 томов[10]. Хотя доказательство второго поколения более компактное, чем доказательство первого поколения, оно всё равно занимает тысячи страниц.
Горенстейн с соавторами указали причины, по которым можно упростить имевшееся ранее доказательство.
Наиболее важно, что теперь известно само правильное финальное утверждение теоремы. Теперь могут быть использованы более простые методы, подходящие для известных типов простых конечных групп. Напротив, авторы, работавшие с первым поколением доказательства, не знали, сколько существует спорадических групп, и, фактически, некоторые спорадические группы (такие как группы Янко) были обнаружены во время доказательства других случаев теоремы классификации. В результате многие части теоремы доказывались с использованием слишком общих методов.
Поскольку окончательное утверждение было неизвестно, первое поколение доказательства состоит из большого числа самостоятельных теорем, имеющих дело с важными особыми случаями. Большая часть работы по доказательству этих теорем посвящена анализу многочисленных особых случаев. В большом, упорядоченном доказательстве работа с многими из этих особых случаев может быть отложена, пока не появится возможность применения более сильных предположений. Цена этой стратегии — некоторые теоремы первого поколения не имеют тогда сравнительно коротких доказательств, а опираются на полную классификацию.
Многие теоремы первого поколения перекрывают друг друга и тем самым разбивают классификацию на возможные случаи неэффективно. В результате семейства и подсемейства конечных простых групп были идентифицированы неоднократно. Пересмотренное доказательство исключает эти повторения путём другого разбиения на случаи.
Теоретики конечных групп получили большой опыт в такого рода работе и имеют возможность использовать новые методы.
Ашбахер[5] назвал работу над задачей классификации, проведённую Ульрихом Майрфранкенфельдом, Берндом Штеллмахером, Гернотом Стротом и несколькими другими, программой третьего поколения. Одна из целей этой работы — рассматривать все группы в характеристике 2 единообразно с помощью метода соединения.
Почему доказательство так длинно?
Горенстейн обсуждал подходы к поиску гораздо более простого доказательства, наподобие классификации компактных групп Ли[англ.], и причины, по которым такого доказательство может не существовать вовсе.
Наиболее очевидная причина — список простых групп достаточно сложен: помимо 26 спорадических групп, имеется много особых случаев, которые необходимо рассмотреть в любом доказательстве. До сих пор не найдено ясное единообразное описание конечных простых групп, подобное параметризации компактных групп Ли с помощью диаграмм Дынкина.
Атья и другие высказали предположение, что классификация могла бы быть упрощена путём построения некоторого геометрического объекта, на котором группы действуют, а затем классифицировать геометрические структуры этого объекта. Проблема здесь в том, что никто не смог предложить простого пути нахождения такой геометрической структуры, ассоциированной с простой группой. В некотором смысле классификация уже работает путём нахождения геометрических структур, таких как пары (B, N), но они появляются в самом конце очень длинного и трудного анализа структуры конечной простой группы.
Другое предложение по упрощению доказательства заключается в большем использовании теории представлений. Проблема здесь в том, что теория представлений, по-видимому, требует очень тесного контроля над подгруппами группы, чтобы работать хорошо. Для групп малого ранга такой контроль имеется и теория представлений работает хорошо, но для групп большего ранга никто не добился успеха в использовании теории представлений для упрощения классификации. В начале попыток классификации прилагались большие усилия для использования теории представлений, но это не принесло больших успехов для случаев больших рангов.
Следствия классификации
В этом разделе перечислены некоторые результаты, которые доказаны с помощью теоремы классификации конечных простых групп.
Транзитивная группа перестановок на конечном множестве с более чем одним элементом имеет элемент без фиксированной точки с порядком, равным степени простого числа.
↑Ronald Solomon.Update on the CGLSS Project I (неопр.). Simple groups, representations and applications. Isaac Newton Institute for Mathematical Sciences (28 июля 2022). Дата обращения: 14 января 2023. Архивировано 14 января 2023 года.
John Horton Conway, Robert Turner Curtis, Simon Phillips Norton, Richard A. Parker, Robert Arnott Wilson.Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. — Oxford University Press, 1985. — ISBN 0-19-853199-0.
Ron Solomon.On Finite Simple Groups and their Classification // Notices of the American Mathematical Society. — 1995. (Технически не слишком сложное изложение, хорошо для исследования истории вопроса)
Н. А. Вавилов. Простые алгебры Ли, простые алгебраические группы и простые конечные группы // Математика XX века. Взгляд из Петербурга / Под ред. А. М. Вершика. — М. : МЦНМО, 2010. — ISBN 978-5-94057-586-3.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Information Technology High School – news · newspapers · books · scholar · JSTOR (January 2015) (Learn how and when to remove this template message) Public school in Long Island City, New York, United StatesInformation Technology High SchoolAddress21-16 44th Ro...
Este artículo se refiere o está relacionado con un programa o serie de televisión reciente o actualmente en curso. La información de este artículo puede cambiar frecuentemente. Por favor, no agregues datos especulativos y recuerda colocar referencias a fuentes fiables para dar más detalles. El Señor de los Cielos Serie de televisión Género Drama criminalCreado por Andrés López LópezDesarrollado por Luis ZelkowiczMariano CalassoProtagonistas Rafael AmayaXimena HerreraRobinson DíazRa
NaskahPapirus P {\displaystyle {\mathfrak {P}}} 66Injil YohanesInjil YohanesNamaP. Bodmer IITeksYohanes 1:1-6:11; 6:35-14:26,29-30; 15:2-26; 16:2-4,6-7; 16:10-20:20,22-23; 20:25-21:9,12,17Waktu200 M, namun mungkin 100-150 M menurut Herbert Hunger, pendiri Vienna Institute of PapyrologyDitemukanJabal Abu ManaKini diBodmer Library, JenewaKutipanMartin, Victor. Papyrus Bodmer II: Évangile de Jean 1-14 (1956); Martin, Victor. Papyrus Bodmer II: Évangile de Jean 14-21 (1958); Martin, Victor...
Président de larépublique du Kosovo(sq) Presidenti i Republikës së Kosovës(sr) Председник Република КосоваPredsednik Republika Kosova Sceau présidentiel du Kosovo. Titulaire actuelleVjosa Osmanidepuis le 4 avril 2021(2 ans, 6 mois et 27 jours) Création 17 février 2008 Mandant Assemblée Durée du mandat 5 ans, renouvelable une fois consécutivement Premier titulaire Fatmir Sejdiu Rémunération 2 873 € par mois (en 2018)[1] Site inte...
Pour les articles homonymes, voir Kelmendi. Cet article est une ébauche concernant un homme politique albanais et le communisme. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Ali KelmendiBiographieNaissance 1er mai 1900Pejë (Vilayet du Kosovo, Empire ottoman)Décès 11 février 1939 (à 38 ans)14e arrondissement de ParisNationalité yougoslaveActivité Homme politiqueAutres informationsArme Brigades...
Dalam artikel ini, nama keluarganya adalah Bak. Bak Jong-cheolLahir(1965-04-01)1 April 1965Busan, Korea SelatanMeninggal14 Januari 1987(1987-01-14) (umur 21)[1]Anti-Communist Detached Office [ko], Garwol-dong, Yongsan-gu, Seoul, Korea Selatan[1]Sebab meninggalSesak napas dengan siksaan dengan menggunakan air[1]Tempat pemakamanMoran Park, Hwado-eup Namyangju, Gyeonggi-do, Korea Selatan37°38′45.2″N 127°19′14.4″E / 37.64588...
2.º Ejército de Choque2-я Ударная армия Fragmento del diorama Rompiendo el asedio de LeningradoActiva 1941-1946País Unión SoviéticaRama/s Ejército RojoTipo InfanteríaTamaño EjércitoDisolución 1946Alto mandoComandantes Grigori SokolovNikolái KlykovAndréi Vlásov Vladímir RomanovskiIván FediúninskiGuerras y batallas Sitio de LeningradoOfensiva de LiubánOfensiva de SiniavinoOperación ChispaOperación Estrella PolarOfensiva de MgaOfensiva de Leningrado-NovgorodBatall...
The British Virgin Islands records in swimming are the fastest ever performances of swimmers from British Virgin Islands, which are recognised and ratified by the British Virgin Islands Swimming Association. All records were set in finals unless noted otherwise. Long Course (50 m) Men Event Time Name Club Date Meet Location Ref 50 m freestyle 100 m freestyle 200 m freestyle 400 m freestyle 800 m freestyle 1500 m freestyle 50 m backstroke 100 m backstroke 200 m backstroke 50 m breaststroke 100...
Traditional healing practices Part of a series onMedical and psychologicalanthropology Basic concepts Health Culture-bound syndrome Double bind Case studies Navajo medicine Related articles Nutritional anthropology Psychological anthropology Cognitive anthropology Transpersonal anthropology Ethnomedicine Clinical ethnography Critical medical anthropology Cross-cultural psychiatry Person-centered ethnography Society for Medical Anthropology National character studies Syndemic Major theorists G...
1963 Australian TV series or program Uneasy ParadiseAd in The Age 26 Jun 1963Written byLaurence Collinson[2]Directed byWilliam SterlingCountry of originAustraliaOriginal languageEnglishProductionRunning time60 minsProduction companyABCOriginal releaseRelease26 June 1963 (1963-06-26) (Melbourne)3 July 1963 (1963-07-03) (Sydney)[1] Uneasy Paradise is a 1963 Australian television film directed by William Sterling. It is a 60-minute drama se...
Virgin Records Основная информация Владелец Universal Music Group Дата основания в 1972 году Основатели Ричард Брэнсон,Саймон Дрейпер,Ник Пауэлл Дистрибьютор Virgin Music Жанр Разное Страна Великобритания Местонахождение Лос-Анджелес, Калифорния, США virginrecords.com Медиафайлы на Викискладе ...
Board game Helltank Destroyer is a science fiction board wargame published by Metagaming Concepts in 1982 as part of its MicroGame line that features combat between supertanks and other futuristic weapoons systems. The game is a sequel to 1981's Helltank, which is itself based on Ogre. Gameplay Helltank Destroyer is a two-player wargame featuring forces armed with powerful weapons, including powerful Helltanks and even more powerful Helltank Destroyers. Players choose a scenario, and then cho...
This article is about the district. For its eponymous headquarters, see Buldhana. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Buldhana district – news · newspapers · books · scholar · JSTOR (February 2016) (Learn how and when to remove this template message) District of Maharashtra in IndiaBuldhana distr...
Garmisch-Partenkirchen Gemeente in Duitsland Situering Deelstaat Beieren Landkreis Garmisch-Partenkirchen Regierungsbezirk Opper-Beieren Coördinaten 47° 30′ NB, 11° 5′ OL Algemeen Oppervlakte 205,66 km² Inwoners (31-12-2020[1]) 27.253 (133 inw./km²) Hoogte 708 m Burgemeester Sigrid Meierhofen (SPD) Overig Postcode 82467 Netnummer 08821 Kenteken GAP Gemeentenr. 09 1 80 117 Website www.garmisch-partenkirchen.de Locatie van Garmisch-Partenkirchen in Garmisch-Partenk...
Second part of Handel's English-language oratorio Messiah Messiah(Part II)by George Frideric HandelThe last page of the Hallelujah chorus, ending Part II, in Handel's manuscriptYear1741 (1741)PeriodBaroqueGenreOratorioTextCharles Jennens, a compilation from the King James Bible and the Book of Common PrayerComposed22 August 1741 (1741-08-22) – 14 September 1741 (1741-09-14): LondonMovements23 in seven scenesVocalSATB choir and soloInstrumental 2 t...
В Википедии есть статьи о других людях с такой фамилией, см. Спитс. Франс Спитснидерл. Frans Spits Личная информация Пол мужской Полное имя Франс Герхард Спитс Страна Нидерланды Специализация хоккей на траве Клуб Амстердамсе Дата рождения 13 июня 1946(1946-06-13) (77 лет) Место ро...
Оконный металлопластиковый профиль в разрезе Не следует путать с металлопластом. Металлопластик — композиционный материал, используемый в производстве облицовочных панелей, водопроводных труб и некоторых других изделий, в котором комбинируются алюминиевый или ...
Indonesian military officer and politician (1945–2023) Amin SyamGovernor of South SulawesiIn office19 January 2003 – 19 January 2008Preceded byZainal Basri Palaguna [id]Succeeded byTanribali Lamo (acting)Syahrul Yasin LimpoChairman of the Regional People's Representative Council of South Sulawesi Province [id]In officeOctober 1997 – 19 January 2003Preceded byAlim BachriSucceeded byEddy Baramuli Personal detailsBorn(1945-12-12)12 December 1945B...