ヤコブ・ベルヌーイのArs Conjectandi(死後、1713年)や アブラーム・ド・モアブルのThe Doctrine of Chances(1718年)は数学的基礎、広範囲の複雑な確率の計算の仕方を示しながら確率論にしっかりした基礎を築いた。ベルヌーイは基礎的な大数の法則の解釈を証明した。その解釈とは沢山の試行においては結果の平均値は予測された値に非常に近くなりそうだと述べるものである。たとえば、表裏の出る確率が同様に確からしいコインを1000回投げる試行において、表は500回近く出そうで、試行回数が増えれば増えるほど、割合は半分ずつに近づいていきそうだということである。
19世紀
不確かなものを扱う際の確率論的手法の力は数回の観察によるカール・フリードリッヒ・ガウスのケレスの軌道の測定で示された。誤差論(英語: Theory of errors)は最小二乗法を誤りがちな観察を正すために使い、特に天文学の分野においては、エラーが正規分布するという前提のもと最も真の値でありそうなものを測定した。1812年には、ラプラスは彼が瞬間積率母関数や最小二乗法、帰納的確率論、仮説の検証といった確率や統計における多くの基礎的結果を統合し打ち立てた“Théorie analytique des probabilities”を出版した。19世紀の終わり頃に、多くの粒子がランダムに動くという観点から温度などのガスの特性を説明したルートヴィッヒ・ボルツマンとウィラード・ギブズの統計力学は、確率についての説明として大成功したと言えるものであった。確率の歴史の分野自体はアイザック・トドハンターの不朽のHistory of the Mathematical Theory of Probability from the Time of Pascal to that of Lagrange (1865) で確立された。
20世紀
確率と統計はロナルド・フィッシャーとイェジ・ネイマンの仮説検定の作業を通して密接に繋がった。そして現在広く生物学や心理学の実験や薬の治験、経済学や他のすべての分野においても同様に応用されている。たとえばある薬がいつも効果的だという仮説は、もしそれが正しければ観察されるであろう確率分布を引き起こす。もし観察がおおよそ仮説に合致していれば仮説は裏付けられたことになり、もし合致していなければ仮説は棄却される[6]。確率過程論は マルコフ過程や、液体の中で浮遊する微粒子の不規則な動きであるブラウン運動のような領域の方へ広がった。そのことが株式市場における不規則な変動の研究のためのモデルを提供した。同時にオプション評価(英語: Valuation of options)のための広範に使用されるブラック-ショールズ方程式としての成功を含む金融工学における洗練された確率論のモデルの使用へ導いた[7]。20世紀にはまた確率解釈における長期にわたる論争があった。20世紀中盤には 頻度主義が支配的だった。そして確率が長期にわたる沢山の試行の相対的な頻度を意味するということが伴った。20世紀の最後には ベイズ確率の観点の復興があった。ベイズ確率によれば、根本的な確率概念というのはその根拠によって命題がどれほどよく支えられているかによる。
Franklin, James (2001). The Science of Conjecture: Evidence and Probability Before Pascal. Baltimore, MD: Johns Hopkins University Press. ISBN0-8018-6569-7
von Plato, Jan (1994). Creating Modern Probability: Its Mathematics, Physics and Philosophy in Historical Perspective. New York: Cambridge University Press. ISBN978-0-521-59735-7
Salsburg, David (2001). The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. ISBN 0-7167-4106-7
スティーブン・スティグラー (1990). The History of Statistics: The Measurement of Uncertainty before 1900. Belknap Press/Harvard University Press. ISBN0-674-40341-X