伊達宗利

 
伊達宗利
時代 江戸時代前期 - 中期
生誕 寛永11年12月18日1635年2月5日
死没 宝永5年12月21日1709年1月31日
戒名 天梁院殿賢山紹徳大居士
官位 従四位下大膳大夫侍従遠江守
幕府 江戸幕府
主君 徳川家綱綱吉
伊予宇和島藩
氏族 宇和島伊達氏
父母 父∶伊達秀宗
母∶朝井氏
兄弟 宗実宗時宗利、菊、萬、鶴松、
桑折宗臣宗純、徳松、宗職、竹松、松、岩松、清、宗則
松平光長の娘・稲姫
元泉氏、古谷氏、昆陽野氏、田部氏、入野氏
豊姫、三保姫、兵助、六松、多尾、
鐵千代、金十郎、富之助、栄之助、
千代之助、光、佐知、賢、
養子∶宗贇
テンプレートを表示

伊達 宗利(だて むねとし)は、江戸時代前期の大名伊予国宇和島藩2代藩主。官位従四位下大膳大夫侍従遠江守

生涯

初代藩主・伊達秀宗の三男として誕生した。寛永16年(1639年)2月15日に元服する。長兄の宗実が病弱のため嫡子を辞し、次兄の宗時が父に先立って死去したため、明暦3年(1657年)7月21日、父の隠居により家督を継ぐ。寛文10年(1670年)から八十島親隆を検地奉行として検地制度や村役人制度を確立し、元禄元年(1688年)には紙専売制度も実施するなどして藩政の基盤を固めた。しかし藩主の居殿である浜屋敷の造営、宇和島城の大改修など出費も相次ぎ、藩財政は苦しかった。

寛文11年(1671年)に本家の仙台藩伊達騒動が起こったときには、今村善太夫ら罪人を預かっている。延宝9年(1681年)の越後騒動の際には、舅である松平光長が当事者だったこともあり、宗利が幕府と越後高田藩松平家との事後処理の窓口とされた。

元禄6年(1693年)11月14日、家督を養嗣子で娘婿の宗贇に譲って隠居し、宝永5年(1708年)12月21日に75歳で死去した。法号は天梁院殿賢山紹徳大居士。

系譜

  • 父:伊達秀宗(1591年 - 1658年)
  • 母:朝井氏
  • 正室:稲姫 - 大通院、松平光長の娘
  • 側室:元泉氏
    • 長男:兵助 - 夭折
  • 側室:古谷氏
    • 三女:多尾 - 夭折
    • 三男:鐵千代 - 夭折
    • 六男:栄之助 - 夭折
  • 側室:昆陽野氏
    • 次男:六松 - 夭折
    • 四男:金十郎 - 夭折、仙台伊達綱村の嗣子内定後に早世
    • 七男:千代之助 - 夭折
  • 側室:田部氏
  • 側室:入野氏
    • 五女:佐知 - 夭折
  • 養子

参考文献

  • 近代史文庫宇和島研究会『家中由緒書 上』(近代史文庫宇和島研究会、1976年)
  • 宇神幸男『シリーズ藩物語 宇和島藩』(現代書館、2011年)
  • 絵本『伊達宗利の娘 豊姫物語〜家と故郷つなぐ「あんず」の縁〜』(宇和島信用金庫 企画制作、2017年)

関連項目

外部リンク

Read other articles:

Sân vận động Yanmar NagaiTên cũSân vận động Osaka Nagai (1964–2014)Vị tríNagai Park, Higashisumiyoshi-ku, Ōsaka, Nhật BảnTọa độ34°36′50,83″B 135°31′6,42″Đ / 34,6°B 135,51667°Đ / 34.60000; 135.51667Giao thông công cộng JR Tây:  R   Tuyến Hanwa tại Nagai Tàu điện ngầm Ōsaka: Tuyến Midosuji tại Nagai Chủ sở hữuThành phố ŌsakaSức chứa47.816Kích thước sân107 x 71 mMặ...

 

Sheree NorthNorth in 1975LahirDawn Shirley Crang(1932-01-17)17 Januari 1932Los Angeles, California, ASMeninggal4 November 2005(2005-11-04) (umur 73)Los Angeles, California, ASSebab meninggalKomplikasi setelah pembedahanPekerjaanActress, singer, dancerTahun aktif1951–1998Suami/istriFred Bessire (1948–1953; bercerai)John Bud Freeman (1955–1956; bercerai)Dr. Gerhardt Sommer (1958–1963; bercerai)Phillip Alan Norman (2003–2005; kematiannya)AnakDawnErica Eve Sheree North (l...

 

The Lord of the Rings Sampul yang didesain oleh Tolkien. Versi ini kemudian dijadikan sampul untuk edisi 50th anniversary.PengarangJ. R. R. TolkienNegaraBritania RayaBahasaInggrisGenre Fantasi Petualangan PenerbitTanggal terbit 29 Juli 1954 11 November 1954 20 Oktober 1955 Jenis mediaPrint (hardback & paperback)Halaman1216 pp (total halaman)Didahului olehThe Hobbit  The Lord of the Rings adalah novel kisah fantasi epik karangan J. R. R. Tolkien. Diterbitkan dalam tiga ...

الإثبات التجريبي لتأثير مارانجوني. تأثير مارانجوني (بالإنجليزية: Marangoni effect)‏ هو مصطلح يستخدم في مجال ميكانيكا الموائع لوصف ظاهرة انتقال المادة على طول سطح معين تحت تأثي تدرج التوتر السطحي (من مناطق التوتر السطحي المنخفص إلى المناطق ذات التوتر السطحي الأعلى منها). تأثير مارا

 

Soldados da UNMEE. A Missão das Nações Unidas na Etiópia e Eritreia (UNMEE) foi criada pelo Conselho de Segurança das Nações Unidas em Julho de 2000 [1] para monitorar um cessar-fogo na guerra fronteiriça iniciada em 1998 entre a Etiópia e a Eritreia. As primeiros tropas militares do batalhão neerlandês - canadense 'NECBAT' chegaram e estabeleceram bases na região em dezembro de 2000. A missão foi formalmente abandonada em julho de 2008 [2], depois de experimentar sérias dificul...

 

Africa/Djibouti11/36/N/043/09/EDari efele.net berdasarkan data 2012cData dari berkas zone.tab di tz databaseKode negara (ISO 3166-1 alpha-2)DJKoordinat (ISO 6709)+1136+04309Data lain dari tz databasePerbedaan waktu UTC (ISO 8601)+03:00Perbedaan waktu DST UTC (ISO 8601)+03:00Pranala luar timezoneconverter.com travelmath.com twiki.org Africa/Djibouti adalah tanda pengenal zona waktu untuk berkas zona di basis data zona waktu IANA. Rincian datanya sebagai berikut: DJ +1136+04309 Africa/Djibouti ...

69th Guards Rifle DivisionActive1943–1953Country Soviet UnionBranch Red ArmyTypeDivisionRoleInfantryEngagementsBelgorod-Kharkov OffensiveBattle of the DnieprKirovograd OffensiveKorsun-Shevchenkovsky OffensiveUman–Botoșani OffensiveFirst Jassy-Kishinev OffensiveSecond Jassy-Kishinev OffensiveBudapest OffensiveSiege of BudapestOperation Konrad IIIOperation Spring AwakeningVienna OffensiveDecorations Order of the Red BannerBattle honoursZvenigorodkaCommandersNotablecommanders...

 

Minor league baseball teamBelleville Stags1947–1949 Belleville, Illinois Minor league affiliationsClassClass D (1947–1949)LeagueIllinois State League (1947–1948)Mississippi–Ohio Valley League (1949)Major league affiliationsTeamSt. Louis Browns (1947–1948)New York Yankees (1949)Minor league titlesLeague titles (1)1947Team dataBallparkBelleville Athletic Field/Stag Park (1947–1949) The Belleville Stags were a minor league baseball team based in Belleville, Illinois. In 1947 and ...

 

Bayou Place Bayou Place is a 130,000 square foot[1] entertainment complex that houses multiple theaters, bars, and restaurants located in Downtown Houston, Texas, United States. The complex was the former Albert Thomas convention center located in the Houston Theater District at 500 Texas Street (originally built in the late 1960s). The convention center was made obsolete with the opening in 1987 of the much larger George R. Brown Convention Center on the eastern edge of downtown. Aft...

2°31′47″N 95°55′5″E / 2.52972°N 95.91806°E / 2.52972; 95.91806 Dermaga Apung di Pulau Simeulue Cut Pulau Simeulue Cut adalah pulau terluar Indonesia yang terletak di Samudra Hindia di pesisir barat pulau Sumatra. Pulau ini merupakan bagian dari wilayah pemerintah Kabupaten Simeulue, Aceh. Pulau ini berada 1,4 mil (sekitar 2,24 kilometer) di sebelah barat dari pulau Simeuleu (atau di sebelah barat laut dari pulau Nias) dengan koordinat 2° 31′ 47″ LU, 95...

 

Olivia Rodrigo discographyRodrigo at the Nickelodeon KCAs in 2022Studio albums2Music videos9EPs1Singles9Soundtrack albums4 American singer and actress Olivia Rodrigo has released two studio albums, one extended play (EP), nine singles, and nine music videos. She also is a part of the soundtrack for The Hunger Games: The Ballad of Songbirds & Snakes and also contributed to the soundtrack of High School Musical: The Musical: The Series, releasing ten promotional singles from it, with All I ...

 

British furniture dealer Theophilus Carter c. 1894 Theophilus Carter (1824 – 21 December 1904) was an eccentric British furniture dealer who may have been an inspiration for the illustration by Sir John Tenniel of Lewis Carroll's characters the Mad Hatter in his 1865 novel Alice's Adventures in Wonderland and Hatta in the 1871 sequel Through the Looking-Glass. Inventor and craftsman Carter was born in Oxford, the son of Thomas Carter and Harriet née Eldridge.[1] Some writ...

Stick used to propel the puck in hockey For other uses, see Hockey stick (disambiguation).This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hockey stick – news · newspapers · books · scholar · JSTOR (August 2018) (Learn how and when to remove this template message)Girl with a field hockey stick A hockey stick ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Libert H. Boeynaems – news · newspapers · books · scholar · JSTOR (March 2019) (Learn how and when to remove this template message) The Most ReverendLibert Hubert BoeynaemsSS.CC.Vicar Apostolic of Hawaiian IslandsChurchRoman CatholicSeeTitular Bishop of Zeugma ...

 

Plucked string instrument from India Saraswati veenaSarasvati veenaString instrumentClassification stringMusicians Veenai Dhanammal, S. Balachander, Chitti Babu, Kalpakam Swaminathan, E. Gayathri, Jayanthi Kumaresh, Rajhesh Vaidhya, Punya SrinivasSound sample Veena Kinhal, song Haratanaya Sree, from the album 'Tribute to Veena Raja RaoMore articles or information Rudra veena, Vichitra veena, Chitra veena The Sarasvatī vīṇa (also spelled Saraswati veena) (Telugu: సరస్వతి వ...

Bermudian lawyer and politician Arthur Dudley Spurling Sir Arthur Dudley Spurling, CBE (9 November 1913 – 20 May 1986) was a Bermudian lawyer, politician, and swimmer. Early life and family Arthur Dudley Spurling was born on 9 November 1913 to Sir Salibury Stanley Spurling and Lady Frances Ellen Spurling. He married Marian Taylor in 1941, the daughter of Frank Gurr of St George's, Bermuda. They had 3 sons and 1 daughter. The eldest son, Stephen, pre-deceased him. The other 3 children ar...

 

Indian TV series or programme En Iniya ThozhiyePromotional logoஎன் இனிய தோழியேGenreSoap opera DramaDirected byGopi.RStarringSrithika Apsar Ekavalli JeyaramCountry of originIndiaOriginal languageTamilNo. of seasons1No. of episodes578ProductionProduction locationChennaiCamera setupMulti-cameraRunning timeapprox. 20-22 minutes per episodeProduction companySri Barati AssociateOriginal releaseNetworkRaj TV International: Raj TV US TETRelease10 November 2014 (201...

 

Diagrama de la posición inicial del juego. Los puntos negros representan a cada uno de los tres mosqueteros y los blancos, representan al enemigo. Tres Mosqueteros es un juego abstracto para dos jugadores. Requiere un tablero de 5x5. Tres fichas de un color, que serán los mosqueteros, y 22 de otro color, que serán la Guardia del Cardenal. Movimientos El jugador que tiene los Tres Mosqueteros mueve primero, y luego ambos jugadores se alternan. Por turno cada jugador mueve una de sus fichas,...

Public university in Regina, Canada University of ReginaFormer namesRegina College (1911–1961)Regina Campus of the University of Saskatchewan (1961–1974)MottoAs one who servesTypePublic research universityEstablished1974Academic affiliationsCARL, CUSID, IAU, UArctic, Universities CanadaEndowment$128.4 million[1]ChancellorPamela KleinPresidentJeff KeshenAcademic staff529[2]Administrative staff1,283Students16,501 (fall 2019)[3]Undergraduates14,474Postgraduates2,027Lo...

 

Proof in set theory This article is about a concept in set and number theory. It is not to be confused with matrix diagonalization. See diagonalization (disambiguation) for several other uses of the term in mathematics. An illustration of Cantor's diagonal argument (in base 2) for the existence of uncountable sets. The sequence at the bottom cannot occur anywhere in the enumeration of sequences above. An infinite set may have the same cardinality as a proper subset of itself, as the depicted ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!