Il fenantrene[2] è un idrocarburotriciclicoaromatico, di formula C14H10, risultante dalla fusione di tre anelli benzenici in maniera obliqua, con cinque possibili strutture di risonanza.[3] È un isomero dell'antracene, anche questo derivante dalla fusione di tre anelli benzenici, ma in maniera lineare, avente però quattro strutture di risonanza.[3] Per il fenantrene, questo comporta maggiore stabilità: la sua energia di stabilizzazione aromatica (387 kJ/mol ) risulta maggiore di quella dell'antracene (351,5 kJ/mol),[4] con una differenza di circa il 10%.
Il fenantrene è il primo rappresentante della serie dei fenaceni, idrocarburi ad anelli benzenici condensati a sbalzo (diversamente dagli aceni, con condensazione degli anelli in linea) e, in quanto tale, prende il nome di [3]fenacene.[6]
Dalla struttura triciclica del fenantrene, saturata, e con un'ulteriore fusione di un anello di ciclopentano deriva lo sterano, ossia il ciclopentanoperidrofenantrene, che è l'ossatura della vasta e importante famiglia degli steroidi.[7]
Etimologia
Anche il nome deriva da fusioni e può essere diviso in: fen(e)-antr(ac) -ene.[8] Il termine fene (phene) viene dal grecoφαίνω (phàino), appaio, illumino,[9] ed era un termine usato per indicare genericamente composti aromatici, perché questi sono presenti nell'olio di catrame di carbon fossile, e in quanto questo olio era usato per illuminazione nei lampioni e come tale veniva chiamato, appunto, olio illuminante.[10][11]
I chimici del XIX secolo usavano primariamente il termine (o a volte l'affisso) 'fene' per i derivati benzenici,[12][13] ed anche per il benzene stesso dal chimico francese Auguste Laurent (poi prevalse il termine benzene, usato da Viktor Meyer).[14][15]
Il nome fene è stato poi esteso ad altri composti eterocicliciaromatici semplici ricavati dall'olio di catrame, quali ad es. il tio-fene (poi anche seleno-fene, telluro-fene), dove tio- sta per zolfo, dal greco θεῖον (théion). Questo non è del tutto casuale, perché il tiofene agli inizi veniva talvolta confuso con il benzene (= fene) per il fatto di avere un punto d'ebollizione quasi uguale al benzene e quindi non facilmente separabile, e per avere reattività simile.
Antrac(s) viene dal greco ἄνθραξ (ánthrax), che vuol dire carbone (presente anche in antracite e litantrace), in quanto questi idrocarburi aromatici sono presenti nel catrame di carbon fossile, mentre -ene è il suffisso generico dato agli idrocarburi insaturi e aromatici (Alcheni, Areni).
Presenza in natura
Il catrame di carbon fossile è la fonte principale del fenantrene, dove si trova insieme all'antracene e altri idrocarburi policiclici aromatici (IPA),[18] oltre ad altri idrocarburi aromatici in genere e composti eterociclici aromatici e loro derivati.
In natura il fenantrene si riscontra nel raro minerale ravatite.[19] Il fenantrene è un residuo della combustione di diverse sostanze organiche ed è presente anche nel fumo di sigaretta. È presente in minuscole quantità in alcune piante, come Buddleja lindleyana, Pterolobium hexapetalum, e anche Vitis vinifera.[20] È stata riscontrata la sua presenza anche negli spazi interstellari insieme ad altri IPA.[21]
Caratteristiche
Come gli altri idrocarburi aromatici non sostituiti, il fenantrene è un composto endotermico, ΔHƒ° = +110,1 ± 2,2 kJ/mol.[22]
Come nell'antracene (e prima ancora nel naftalene), nella molecola le lunghezze dei legami non sono tutte uguali. Il legame C-C più corto (134,1 pm) è quello C(9)-C(10), che è corto quasi come il legame doppio dell'etilene (133,9 pm)[25] ed è più corto del legame di ordine intermedio del benzene, che è di 139,8 pm; non casualmente, questo legame è quello che appare doppio 4 volte su 5 nelle forme di risonanza. Il legame più lungo è quello C(10)-C(10a) (145,0 pm) ed è anche quello che appare singolo 4 volte su 5 nelle forme di risonanza.[26]
Nell'ambito della teoria dei sestetti aromatici di Clar[27] il fenantrene ne presenta fino a due (negli anelli benzenici estremi) e per questo avrebbe maggiore stabilità rispetto all'antracene che ne presenta uno solo.[28]
La molecola, pur con la possibile mutua interazione degli idrogeni nelle posizioni 4 e 5 (la loro distanza è prevista inferiore al doppio dei raggi di van der Waals), appare essere virtualmente planare entro l'errore sperimentale, e ha quindi simmetria C2v;[29] un'eventuale torsione degli anelli come accade negli eliceni, di cui a volte viene considerato il primo rappresentante (in tal caso sarebbe il [3]-elicene),[30] ne abbasserebbe la simmetria a C2 e così renderebbe la molecola chirale, cosa che nel [4]elicene (nome sistematico: benzo[c]fenantrene) è già strutturalmente evidente.[31]
Pur essendo una molecola idrocarburica e a differenza dell'isomero antracene, presenta un significativo momento dipolare (μ = 0,55 D).[32]
Reattività
In 4 delle 5 forme di risonanza del fenantrene c'è un doppio legame tra le posizioni 9 e 10. Per altri versi, la struttura del fenantrene può essere vista come un bifenile con un ponte vinilene (-CH=CH-) inserito tra le posizioni 2 e 2' al posto dei due H. Questo fa sì che il fenantrene, nonostante sia aromatico, possa subire reazioni di addizione tipiche degli alcheni (addizioni elettrofile) e queste sono spesso favorite sulle sostituzioni elettrofile, tipiche degli idrocarburi aromatici.
In effetti, la bromurazione in etere (o anche in CS2) a freddo dà il derivato di addizione, il 9,10-dibromo-9,10-diidrofenantrene, che però elimina per riscaldamento una molecola di HBr per dare il prodotto di sostituzione, il 9-bromofenantrene; similmente accade per l'antracene[33].
Più in generale, il comportamento chimico è comunque caratterizzato dalla particolare reattività nelle posizioni 9 e 10, che qui sono reciprocamente in orto (1,2); parallelamente, nell'antracene le posizioni più reattive sono ancora le 9 e 10, ma lì si trovano reciprocamente in para (1,4).
Addizioni nelle posizioni 9 e 10 e altre reazioni tipiche di alcheni
Reagisce con l'ozono nelle posizioni 9 e 10 come fosse un alchene, dando il corrispondente ozonuro il quale, per idrolisi riduttiva, porta alla corrispondente dicarbossaldeide del bifenile (C6H4-CHO)2.[39]
Il fenantrene può subire un'idrogenazione catalitica (Ni Raney, 96 °C) relativamente facile per un idrocarburo aromatico, saturando le posizioni 9 e 10.[40]
A differenza dell'antracene, che con l'anidride maleica dà la reazione di Diels-Alder in 9 e 10 come fosse un diene,[41] il fenantrene non reagisce, in accordo alla sua maggiore stabilità suggerita dalla regola di Clar.[42]
Le acilazioni di Friedel-Crafts sul fenantrene si possono effettuare senza particolari difficoltà, ma danno selettività posizionali piuttosto variabili con il solvente e le condizioni di reazione, che portano a miscele di prodotti. L'acetilazione porta in genere a acetilfenantreni nelle posizioni 1, 2, 3, 4 e 9.[45]
^ I. L. Finar, ORGANIC CHEMISTRY The fundamental principles, Fourth Edition, Longmans, 1963, p. 738.
^(EN) John R. Durland e Homer Adkins, Hydrogenation of Phenanthrene, in Journal of the American Chemical Society, vol. 59, n. 1, 1937-01, pp. 135–137, DOI:10.1021/ja01280a033. URL consultato il 22 luglio 2022.