Les réserves mondiales prouvées d'énergiefossile pouvaient être estimées en 2022, selon l'Agence fédérale allemande pour les sciences de la Terre et les matières premières, à 41 662 EJ (exajoules), dont 55 % de charbon, 25 % de pétrole et 19 % de gaz naturel. Ces réserves assurent 83 ans de production au rythme actuel ; cette durée est très variable selon le type d'énergie : 54 ans pour le pétrole, 56 ans pour le gaz naturel, 141 ans pour le charbon. Pour l'uranium, avec les techniques actuelles, elle serait de 90 à 130 ans selon les estimations, et sa durée d'utilisation pourrait se compter en siècles en ayant recours à la surgénération. À plus long terme, la fusion nucléaire pourrait apporter des ressources encore plus élevées. Le potentiel de l'énergie solaire est également quasi illimité.
La production mondiale d'énergie commercialisée était en 2023, selon l'Energy Institute, de 620 EJ, en progression de 15,3 % depuis 2013. Elle se répartissait en 31,7 % de pétrole, 26,5 % de charbon, 23,3 % de gaz naturel, 4,0 % de nucléaire et 14,6 % d'énergies renouvelables (EnR) (dont hydroélectricité : 6,4 % ; éolien, solaire, biomasse, géothermie, biocarburants : 8,2 %). Dans la production électrique mondiale, le charbon reste largement dominant.
Depuis la révolution industrielle, la consommation d'énergie ne cesse d'augmenter. La consommation finale énergétique mondiale progresse de 63 % entre 1990 et 2022 ; elle s'élève en 2022, selon l'Agence internationale de l'énergie (AIE), à 422 EJ, dont 21 % sous forme d'électricité ; depuis 1990, elle progresse un peu plus vite que la population, mais sa répartition par source d'énergie n'a guère évolué : la part des énergies fossiles recule de 1,6 points, mais leur domination reste massive : 81,9 % ; la part des EnR passe de 14,2 % en 1990 à 16,1 % en 2022, car le recul de la part de la biomasse compense en partie la progression des autres EnR. Quatre pays concentrent 50,5 % de cette consommation : la Chine 22,8 %, les États-Unis 15,7 %, l'Inde 6,7 % et la Russie 5,3 %. La répartition par secteur de cette consommation est : industrie 30 %, transports 28 %, résidentiel 20 %, tertiaire 8 %, agriculture et pêche 2 %, usages non énergétiques (chimie, etc.) 10 %. La part de l'électricité dans la consommation finale d'énergie progresse rapidement : de 13,5 % en 1990 à 21 % en 2022 ; cette progression est la plus rapide dans les pays émergents. La consommation par habitant est en moyenne mondiale de 78,3 GJ/hab ; celle du Bangladesh ne représente que 15,7 % de cette moyenne alors que celle des États-Unis est 3,48 fois supérieure à la moyenne.
Au niveau mondial, les émissions de dioxyde de carbone (CO2) dues à l'énergie en 2022 sont estimées par l'AIE à 35 Gt, en progression de 140 % depuis 1971, dont 43,7 % produites par le charbon, 32,7 % par le pétrole et 21,3 % par le gaz naturel ; par secteur en 2022, 38 % sont issues de l'industrie, 24 % du transport, 17 % du secteur résidentiel et 9 % du secteur tertiaire. Les émissions de CO2 par habitant en 2022 sont estimées à 4,29 t dans le monde, 13,81 t aux États-Unis, 7,50 t en Chine, 7,30 t en Allemagne, 4,13 t en France, 1,78 t en Inde et 0,89 t en Afrique. Selon l'Energy Institute, les émissions mondiales de CO2 liées à l'énergie ont progressé de 3 % de 2019 à 2023.
Dans le cadre de la convention-cadre des Nations unies sur les changements climatiques, tous les pays se sont engagés à maintenir la hausse des températures en deçà de +2 °C par rapport à l'ère préindustrielle. Pour aboutir à ce résultat, il faut globalement s'abstenir d'extraire un tiers des réserves de pétrole, la moitié des réserves de gaz et plus de 80 % du charbon disponibles dans le sous-sol mondial, d'ici à 2050. Selon l'AIE, les engagements individuels des pays à la conférence de Paris de 2015 sur les changements climatiques (COP21) sont largement insuffisants : ils ne feraient que ralentir la progression des émissions de CO2 et mèneraient à une hausse des températures de +2,7 °C en 2100.
Par la force de l'habitude, nombre de statisticiens continuent à utiliser la tonne d'équivalent pétrole (tep) et plus souvent son multiple, la mégatonne d'équivalent pétrole (Mtep), le pétrole étant la source d'énergie la plus utilisée dans le monde. Cependant beaucoup (surtout dans les pays d'Europe du Nord) prennent l'habitude d'utiliser des multiples de l'unité officielle et il n'est pas rare de trouver des péta voire des exa-joules (péta et exa sont des préfixes du Système international d'unités) pour mesurer l'énergie produite à l'échelle de pays ou du monde[n 1]. L'Agence internationale de l'énergie a basculé ses statistiques des tep aux joules en 2021. Les tep ne sont dès lors presque plus utilisées.
Chaque type d'énergie possède son unité de mesure privilégiée et l'on utilise pour les agréger ou les comparer les unités de base que sont le joule et la mégatonne d'équivalent pétrole (Mtep), parfois le kilowatt-heure (kWh), toute énergie primaire étant assez souvent convertie en électricité. Les unités particulières à chaque énergie sont :
pétrole : tonne d'équivalent pétrole (tep) ou baril (bl) ;
Les flux d'énergie, depuis l'extraction minière de combustibles fossiles ou la production d'énergie nucléaire ou renouvelable (énergie primaire), jusqu'à la consommation par l'utilisateur final (énergie finale), sont retracés par les bilans énergétiques. Les opérations de conversion et transport de l'énergie donnant toujours lieu à des pertes diverses, l'énergie finale est toujours plus faible que l'énergie primaire.
La différence peut être faible pour l'industrie pétrolière par exemple, dont le rendement est dans certains cas proche de 1 (par exemple, pour une tonne brûlée dans un moteur à combustion, on n'a eu besoin d'extraire qu'à peine plus d'une tonne d'un puits de pétrole saoudien ; ce n'est néanmoins pas le cas pour les gisements offshore profonds, les pétroles lourds, le gaz de schiste voire les bitumes canadiens dont le rendement de production peut être le facteur limitant leur exploitabilité, indépendamment du prix).
En revanche, la différence est très importante si ce carburant est converti en énergie mécanique (puis éventuellement électrique), puisque le rendement de ce processus est au maximum de l'ordre de 40 % (ex. : pour 1 tep sous forme d'électricité consommée chez soi, le producteur a brûlé 2,5 tep dans sa centrale à charbon, type de centrale actuellement le plus répandu dans le monde). Une centrale électrique présente souvent sa puissance selon deux unités différentes, « MWth » (MW thermique) et « MWe » (MW électrique) ; la première correspond à l'énergie primaire, la seconde à l'énergie finale[1].
Dans le cas d'une électricité produite directement (hydroélectricité, photovoltaïque, géothermique…), la conversion en énergie primaire pertinente est fonction du contexte et le coefficient de conversion utilisé doit être indiqué (voir ci-dessous) : pour comptabiliser la production d'une centrale hydroélectrique, on peut convertir directement les kilowatts-heures en tep selon l'équivalence physique en énergie 11 630 kWh = 1 tep ; mais si l'on se pose la question « combien de centrales à charbon cette centrale hydroélectrique peut-elle remplacer ? », alors il faut multiplier par 2,5.
Conversion des productions électriques
Lorsqu'il s'agit de convertir une énergie électrique exprimée en kilowatts-heures (ou ses multiples) en énergie primaire exprimée en tep, on rencontre couramment deux méthodes :
la méthode théorique ou « énergie finale » : on calcule simplement le nombre de tep selon l'équivalence physique en énergie ci-dessus ;
la méthode de « l'équivalent à la production » ou « méthode de substitution », qui indique le nombre de tep nécessaires à la production de ces kilowatts-heures. Pour cela, on introduit un coefficient de rendement par lequel on doit multiplier le nombre de tep pour obtenir le nombre de kilowatts-heures. Par exemple, considérant un rendement de 38 %, on a 1 TWh = 106 MWh = 0,086 / 0,38 × 106 tep = 0,226 Mtep. Ainsi, on considère que 1 TWh est équivalent à 0,226 Mtep (et non 0,086 Mtep), car on considère qu'il est nécessaire de produire ou qu'il a fallu produire 0,226 Mtep pour obtenir 1 TWh.
La méthode retenue par les institutions internationales (Agence internationale de l'énergie, Eurostat…) et utilisée en France depuis 2002, est assez complexe en ce qu'elle utilise deux méthodes différentes et deux coefficients différents selon le type d'énergie primaire ayant produit l'électricité :
électricité produite par une centrale nucléaire : coefficient de 33 % ;
électricité produite par une centrale géothermique : coefficient de 10 % ;
toutes les autres formes d’électricité : méthode théorique, ou méthode du contenu énergétique qui revient à utiliser un coefficient de conversion de 100 %.
Le présent article utilise également cette méthode de substitution ou méthode de l'équivalent à la production avec un coefficient de 38 % pour toutes les sources d'énergie électriques. En effet nous considérons l'énergie qu'il aurait fallu dépenser dans une centrale thermique d'un rendement de 38 % pour produire cette énergie électrique. Ceci est la meilleure méthode pour comparer les différentes énergies entre elles.
Classement des énergies primaires et secondaires
Au niveau de la production et de la consommation, les différentes formes d'énergie primaire peuvent se classer de la façon suivante :
Les énergies secondaires issues de transformations des énergies primaires constituent la majorité des formes d'énergies utilisées par les consommateurs :
l'immensité des réserves potentielles de l'énergie solaire : selon le Conseil mondial de l'énergie, 1,08 × 1014 kW d'énergie solaire atteignent la surface terrestre. Même si seulement 0,1 % de cette énergie pouvait être convertie à un rendement de 10 %, cela représenterait déjà quatre fois la puissance installée mondiale de 3 000 GW en 2010[2] ;
la relative faiblesse des réserves d'uranium (énergie nucléaire) telles qu'estimées par l'Association nucléaire mondiale (ANM). Selon le cinquième rapport d'évaluation du GIEC, les ressources déjà identifiées et exploitables à des coûts inférieurs à 260 $/kgU suffisent à couvrir la demande actuelle d'uranium pour 130 ans, soit un peu plus que l'estimation de l'ANM (voir tableau infra), qui repose sur un plafond de coût d'exploitation inférieur. Les autres ressources conventionnelles, à découvrir mais dont l'existence est probable, exploitables à des coûts éventuellement supérieurs, permettraient de répondre à cette demande pour plus de 250 ans. Le retraitement et le recyclage de l'uranium et du plutonium des combustibles usés permettrait de doubler ces ressources et la technologie des réacteurs à neutrons rapides peut théoriquement multiplier par 50 ou plus le taux d'utilisation de l'uranium[3]. Le thorium est trois à quatre fois plus abondant que l'uranium dans la croûte terrestre mais les quantités exploitables sont mal connues car cette ressource n'est pas utilisée à grande échelle actuellement[3].
Réserves mondiales d'énergies 2020 et consommation annuelle 2022 par sources d’énergie
Les potentiels énergétiques présentés ci-dessus ne sont pas directement comparables : pour les énergies fossiles et nucléaires, il s'agit de ressources techniquement récupérables et économiquement exploitables, alors que pour les énergies renouvelables (sauf l'hydroélectricité et une part de la biomasse), il n'existe encore aucune estimation globale des ressources économiquement exploitables : les parcs éoliens de nouvelle génération et les centrale solaires photovoltaïques de grande taille s'approchent de la compétitivité en coût d'investissement par rapport aux centrales à gaz ou au charbon mais ne peuvent encore, dans la plupart des cas, être produites que si elles sont subventionnées : selon l'ADEME (en 2017), « les soutiens publics restent nécessaires pour prolonger les baisses de coût, faciliter les investissements ou compenser les défaillances de marché »[11] ; les potentiels indiqués ici sont des potentiels théoriques basés sur des considérations uniquement techniques.
Les productions indiquées ci-dessus sont en fait des consommations estimées par l'Energy Institute ; on néglige ainsi les variations de stocks.
Pour le solaire et la biomasse, les réserves indiquées correspondent aux potentiels annuels disponibles sur toute la surface terrestre, alors que pour les autres énergies, seules les réserves prouvées et économiquement exploitables sont prises en compte. Seule une très petite part du potentiel solaire théorique peut être exploitée, car les terres cultivables resteront réservées à l'agriculture, les océans seraient difficilement exploitables, et les zones proches des pôles ne sont pas économiquement exploitables.
À plus long terme, la fusion nucléaire, actuellement au stade expérimental, pourrait théoriquement apporter des ressources beaucoup plus importantes : la quantité d'énergie produite par la réaction de fusion est environ quatre millions de fois supérieure à celle que génèrent des réactions chimiques telles que la combustion du charbon, du pétrole ou du gaz naturel ; une centrale de fusion comme celles qui pourraient être opérationnelles dans la deuxième partie du XXIe siècle ne consommerait que 250 kg de combustible chaque année, répartis à parts égales entre le deutérium et le tritium[12].
Conventions de conversion : pour les énergies qui sont transformées en électricité (uranium, hydraulique, éolien, solaire), la conversion en unité de base (EJ) est réalisée en termes équivalents à la production. Pour l'uranium, la conversion des réserves en exajoules a été réalisée sur la base d'une consommation annuelle de 67,5 kt d'uranium[5] pour produire 25 EJ d'électricité[e 1].
↑Réserves minières d'uranium prouvées. Ne tient pas compte des réserves secondaires (stocks civils et militaires, uranium appauvri…) qui comptent pour plus d'1/3 de la consommation actuelle.
↑67,5 kt d'uranium pour produire 24 EJ d'électricité
↑Le thorium est utilisé à la place de l'uranium dans certaines centrales en Inde et est envisagé en Chine.
↑Production éolienne annuelle sur la base d'un facteur de capacité de 22 % pour 237 GW installés en 2011.
Les deux premières catégories de ressources forment les ressources découvertes : 6 715 kt. Les deux dernières forment les ressources à découvrir. Au total, les réserves ultimes (ressources) atteindraient 12 240 kt.
Réserves mondiales estimées de thorium par pays en milliers de tonnes[6]
Les énergies renouvelables sont par définition « inépuisables à l'échelle du temps humain »[14]. L'évaluation de leur potentiel se fait donc non en termes de réserves, mais en considérant le flux énergétique potentiel que peut fournir chacune de ces sources d'énergies. Comme pour toutes les sources d'énergie, on obtient la quantité d'énergie produite en multipliant le temps de production par la puissance moyenne disponible (puissance maximale pondérée par le facteur de charge). Il est assez difficile de connaître le potentiel de chaque énergie car celui-ci varie selon les sources (voir tableau). Cependant, le potentiel théorique de l'énergie solaire peut être évalué assez facilement puisque l'on considère que la puissance maximale reçue par la terre – après passage dans l'atmosphère – est d'environ 1 kW/m2. On arrive alors à une potentiel énergétique solaire théorique sur un an de 1 070 000 PWh. Bien entendu, la grande majorité de la surface terrestre est inutilisable pour la production d'énergie solaire, car celle-ci ne doit pas entrer en concurrence avec la photosynthèse nécessaire à la production alimentaire, depuis les échelons les plus modestes des chaînes alimentaires (phytoplancton, végétaux en général) jusqu'à l'agriculture. Les surfaces utilisables pour le solaire se limitent aux déserts, aux toits de bâtiments et autres surfaces déjà stérilisées par l'activité humaine (routes, etc). Mais il suffirait théoriquement de couvrir 0,3 % des 40 millions de kilomètres carrés de déserts de la planète de centrales solaires thermodynamiques pour assurer les besoins électriques de l'humanité en 2009 (environ 18 000 TWh/an)[15].
La production énergétique mondiale (énergie primaire) s'élevait selon l'Agence internationale de l'énergie à 631 EJ (exajoules) en 2022 contre 366 EJ en 1990[16], soit +73 % en 32 ans. Les énergies fossiles représentaient 81,3 % de cette production (charbon : 28,2 %, pétrole : 29,9 %, gaz naturel : 23,2 %) contre 81,4 % en 1990 ; le reste de la production d'énergie provenait du nucléaire (4,6 %) et des énergies renouvelables (14,1 %, dont 8,6 % de la biomasse et des déchets, 2,5 % de l'énergie hydraulique et 3,0 % d'autres EnR). De 1990 à 2022, cette répartition a peu changé : la part des énergies fossiles a baissé de 0,6 point, celle du nucléaire de 1,4 point et celle des énergies renouvelables a progressé de 2 points[16]. La biomasse comprend le bois énergie, les déchets urbains et agricoles, les biocarburants ; les autres EnR comprennent l'énergie éolienne, l'énergie solaire, la géothermie, etc. Cette statistique sous-évalue la part des énergies renouvelables électriques (hydroélectricité, éolien, photovoltaïque) : cf. conversion des productions électriques.
Avec des conventions différentes, l'Energy Institute donne des estimations plus récentes :
Production énergétique mondiale commercialisée selon la source d'énergie
Cette statistique comprend les énergies renouvelables utilisées pour la production d'électricité, mais pas celles utilisées directement pour des usages thermiques (bois, biocarburants, pompe à chaleur géothermique, chauffe-eau solaire…) ni celles qui sont auto-consommées.
Selon les statistiques ci-dessus de l'Energy Institute, les combustibles fossiles totalisent 81,5 % de la consommation d'énergie et les énergies renouvelables 14,6 % en 2023. Le réseau REN21 estime en 2024 que la part des énergies renouvelables modernes dans la consommation d'énergie finale était en 2022 de 13 %, sans compter la biomasse traditionnelle (électricité renouvelable : 7,0 %, chaleur renouvelable : 4,9 %, biocarburants : 1,0 %) contre 9,5 % en 2012[17].
En 2016, pour la première fois, les investissements mondiaux dans le pétrole et le gaz sont tombés au-dessous de ceux dans l'électricité ; ils ont baissé de 38 % entre 2014 et 2016 ; les investissements bas carbone dans la production et le transport d'électricité ont progressé de 6 %, atteignant 43 % des investissements totaux dans l'énergie ; les investissements dans le charbon ont chuté d'un quart en Chine ; les mises en service de centrales charbon ont baissé fortement de 20 GW au niveau mondial, et les décisions d'investissement prises en 2016 sont tombées à 40 GW seulement ; dans le nucléaire, 10 GW ont été mis en service mais seulement 3 GW ont été décidés. Les investissements dans les énergies renouvelables ont reculé de 3 %, mais les mises en service ont progressé en cinq ans de 50 % et la production correspondante de 35 %[18],[19].
* uniquement combustibles solides commercialisés : charbons et lignite.
NB : la Pologne passe du neuvième rang en 2022 au onzième en 2023. Sa production a décru de 2,39 EJ en 2013 à 1,48 EJ en 2023, en baisse de 38,1 %[e 3].
Les quatre premiers producteurs de 2022 regroupent 38 744 tonnes, soit 78,5 % du total mondial.
NB : les données ci-dessus prennent en compte uniquement la production des mines, qui en 2022 couvre 74 % de la demande. Les autres sources d'uranium sont le retraitement des combustibles usés, le ré-enrichissement d'uranium appauvri et parfois le prélèvement dans les importants stocks conservés en réserve, estimés en 2020 à 282 000 t, dont 41 000 t aux États-Unis, 42 000 t dans l'Union européenne, 129 000 t en Chine, 9 600 t en Inde et 60 000 t dans les autres pays d'Asie orientale[21].
Les cinq principaux pays producteurs regroupent 73,8 % du total mondial. L'Ukraine, qui produisait 89,2 TWh en 2010 et 86,2 TWh en 2021, soit 55 % de l'électricité du pays a vu sa production tomber à 62,1 TWh en 2022 et n'est plus prise en compte par l'AIEA. L'Allemagne, qui produisait 140,6 TWh en 2010 et 31,9 TWh en 2022, n'en produit plus que 7,2 TWh en 2023 et a fermé ses dernières centrales le 14 avril 2023.
Le recul de la production mondiale provient principalement de l'arrêt de réacteurs au Japon (−236 TWh) et en Allemagne (−109 TWh) à la suite de l'accident nucléaire de Fukushima, et d'une baisse transitoire de la production française due à des problèmes de corrosion (−146 TWh), en grande partie compensés par la progression du nucléaire en Chine, en Russie et en Inde.
Selon le rapport annuel de l'Association nucléaire mondiale, la production nucléaire mondiale est repartie à la hausse de 4 % en 2021, atteignant 2 653 TWh, la troisième plus haute production mondiale d'électricité d'origine nucléaire depuis 1970, juste derrière les 2 657 TWh de 2019 et les 2 660 TWh de 2006. La puissance installée des centrales nucléaires chinoises a progressé de 13 % en 2021, passant de 46 GW à 52 GW, classant la Chine au 3e rang mondial après les États-Unis (94 GW) et la France (61 GW). Au , sur les 56 réacteurs nucléaires en cours de construction dans le monde, 41 sont en Asie, dont 20 en Chine, soit 20,6 GW en Chine sur 57,6 GW dans le monde. Sur les 10 nouveaux projets lancés dans le monde en 2021, 6 étaient chinois, et la Chine est le seul pays à avoir démarré la construction de nouveaux réacteurs (trois REP) au premier semestre 2022. La Chine a multiplié par dix le nombre de ses centrales depuis vingt ans, et par six sa production d'électricité depuis 2010. Son 14e plan quinquennal (2021-2025) fixe l'objectif de doubler la part du nucléaire dans la production d'électricité, pour la faire passer à 10 % en 2035. Dix réacteurs ont été définitivement arrêtés en 2021, dont trois en Allemagne, mais la capacité totale des réacteurs atteint 370 GW en 2021, en hausse de 1 GW par rapport à 2020. Le facteur de charge moyen passe de 80,3 % en 2020 à 82,4 % en 2021[24].
La production hydroélectrique varie fortement d'une année à l'autre en fonction des précipitations. Ainsi, la production brésilienne a subi en 2000 une chute de 12 %, puis a connu 2011 un record de 428,3 TWh, suivi d'une série d'années sèches atteignant un minimum de 359,7 TWh en 2015 (−16 %), malgré la mise en service de nombreux barrages dans l'intervalle, et en 2021 elle chute de 8,5 %, puis rebondit en 2022 de 17,7 %. La production des États-Unis a connu une chute de 23,3 % en 2001, suivie d'une remontée de 35,9 % en 2002, et un bond de +20,4 % en 2011 suivi d'une chute de −13,4 % en 2012. Celle de la France a chuté de 24 % entre 2020 et 2022 avant de remonter de 18,8 % en 2023.
Source : AIE[25]. * Estimations de l'Energy Institute[e 2] (photovoltaïque + thermodynamique). ** Part mix = part du solaire photovoltaïque dans la production d'électricité du pays.
La production d'électricité solaire thermodynamique s'élevait en 2022 à 13 625 TWh, soit 0,05 % de la production d'électricité mondiale. Les principaux pays producteurs étaient l'Espagne (33,3 %), les États-Unis (23,9 %), la Chine (15,2 %), l'Afrique du Sud (10,6 %), le Maroc (6,3 %), Israël (5,4 %), le Chili et les Émirats arabes unis[26].
Production d'électricité solaire thermodynamique par pays (TWh)
En mai 2021, un rapport de l'Agence internationale de l'énergie estime que, pour espérer atteindre la neutralité carbone en 2050, il est nécessaire de renoncer dès à présent à tout nouveau projet d'exploration pétrolière ou gazière ou de centrale à charbon, d'investir 5 000 milliards $ par an dans les technologies bas carbone, soit plus du double du rythme actuel, d'installer d'ici à 2030 quatre fois plus de capacités solaires et éoliennes annuelles qu'en 2020 ; les ventes de voitures neuves à moteur thermique doivent aussi cesser dès 2035. D'ici à 2050, 90 % de l'électricité devra provenir des énergies renouvelables, et une large part du solde de l'énergie nucléaire ; les ressources fossiles ne fourniraient plus qu'un cinquième de l'énergie, contre quatre cinquièmes en 2020. De nombreux défis devront être affrontés, dont les besoins en métaux rares, nécessaires aux technologies nouvelles mais concentrés dans un petit nombre de pays ; près de la moitié des réductions d'émissions de CO2 viendra de technologies aujourd'hui au stade de la démonstration : batteries avancées, hydrogène vert, mais aussi systèmes de captage et stockage du CO2 (CCS)[27].
Le rapport annuel 2018 de l'Agence internationale de l'énergie sur l'évolution prévisible de la production d'énergie prévoit une croissance de plus de 25 % de la demande totale d'énergie d'ici 2040, tirée notamment par l'Inde et les pays en développement. La demande mondiale d'électricité devrait bondir de 60 % et représenter près d'un quart de la demande totale d'énergie contre 19 % en 2017 ; la demande de charbon et de pétrole devrait reculer ; la part des énergies renouvelables pourrait atteindre 40 % en 2040 contre 25 % en 2017. L'Agence internationale de l'énergie imagine un autre scénario appelé « le futur est électrique », avec un développement beaucoup plus volontariste des usages de l'électricité pour la mobilité et le chauffage : la demande d'électricité augmenterait alors de 90 % au lieu de 60 % d'ici à 2040 ; avec la moitié de la flotte de voitures devenue électrique, la qualité de l'air s'améliorerait fortement, mais cela aurait un effet négligeable sur les émissions de gaz carbonique sans des efforts plus importants pour augmenter la part des renouvelables et des sources d'électricité faiblement carbonées[28].
Selon le rapport 2016 de l'Agence internationale de l'énergie, l'Accord de Paris sur le climat de 2015 aura pour effet, si les engagements des pays sont respectés, de ralentir la croissance des émissions de CO2 liées à l'énergie (croissance annuelle ramenée de 600 à 150 millions de tonnes par an), ce qui serait largement insuffisant pour atteindre l'objectif de limiter à +2 °C le réchauffement climatique d'ici 2100 ; la trajectoire résultant de ces accords mènerait à +2,7 °C. Le scénario menant à +2 °C impliquerait une forte baisse des émissions, et par exemple le passage du nombre de véhicules électriques à 700 millions en 2040. Selon le DrFatih Birol, directeur exécutif de l'Agence internationale de l'énergie, « les renouvelables font de très grands progrès sur les prochaines décennies mais leurs gains restent largement confinés à la production d'électricité. La prochaine frontière pour l'histoire des renouvelables est d'étendre leur usage dans les secteurs de l'industrie, du bâtiment et des transports où existent d'énormes potentiels de croissance »[29].
Si d'autres sources d'énergies pourront être utilisées à court terme en remplacement des énergies fossiles, plusieurs physiciens font remarquer qu'une croissance à taux constant de la production d'énergie n'est de toute façon physiquement pas possible à long terme, car les limites planétaires (quantité d'énergie reçue par la Terre en provenance du Soleil) seraient atteintes en quelques siècles, même avec un taux de croissance relativement modeste[30],[31].
Projet européen
En , Miguel Arias Cañete (commissaire européen à l'énergie) a annoncé que l'Union européenne (premier importateur d'énergie fossile dans le monde) a annoncé un objectif de diminution de près d'un tiers sa consommation d'énergie avant 2030 (−32,5 % soit −0,8 % d'économie par an), mais l'objectif est non-contraignant. Il s'inscrit dans le cadre de l'accord de Paris (−40 % de GES émis d'ici 2030 pour l'UE) et du troisième volet du paquet « Énergie propre » proposé par la Commission fin . Il vise l'indépendance énergétique de l'Europe, mais doit ensuite être approuvé par les États membres et les eurodéputés qui étaient plus ambitieux (−35 % par rapport au niveau de 1990). Pour cela la législation sur la construction des bâtiments et sur les énergies renouvelables a été précisée et l'UE envisage de pousser à améliorer l'efficacité énergétique des appareils électro-ménagers et des chauffe-eau. L'UE veut aussi renforcer l'accès pour tous à l'information individuelle sur nos consommations d'énergie (dont pour le chauffage collectif, la climatisation et l'eau chaude).
Les ONG, des eurodéputés et certains observateurs rappellent que cet objectif peu ambitieux ne suffira pas à répondre à l'accord de Paris. La France ou la Suède visent déjà −35 %. Ces objectifs pourraient éventuellement être revus à la hausse en 2023, mais il « restera dans les livres d'histoire comme une opportunité manquée malgré les meilleurs efforts du Parlement européen et de plusieurs Etats membres progressistes » juge Imke Lübbeke du WWF (citant l'Italie et l'Espagne qui ont poussé à plus d'ambition)[32].
Consommation énergétique mondiale
En 1800, avant la révolution industrielle, la consommation énergétique mondiale (énergie commerciale seulement) était de 305 Mtep (soit moins de 13 EJ), dont 97 % issue de l'exploitation de la biomasse (en particulier du bois) et 3 % du charbon. Ce dernier combustible devient majoritaire au début du XXe siècle en raison des besoins massifs des machines à vapeur[34].
En 2022, l'énergie finale consommée dans le monde s'élevait à 422 EJ contre 259 EJ en 1990[35], en progression de 63 % en 32 ans.
Consommation énergétique selon le type d'énergie utilisé
Production d'énergie primaire[36] et consommation finale d'énergie[37] selon le type d'énergie utilisé (PJ)
Type d'énergie
Production d'énergie primaire 1990
Consom. finale 1990
Part dans la consom. 1990
Production d'énergie primaire 2022
Consom. finale 2022
Variation consom. 2022/1990
Part dans la consom. 2022
Pétrole
135 717
109 132
42,2 %
188 371
168 056
+54 %
39,8 %
Gaz naturel
70 658
39 557
15,3 %
146 645
70 773
+79 %
16,8 %
Charbon
93 089
31 459
12,2 %
177 930
37 282
+19 %
8,8 %
Nucléaire
22 002
-
-
29 320
-
+39 %
-
Hydroélectricité
7 715
-
-
15 661
-
+101 %
-
Éolien, solaire, géoth.
1 534
144
0,06 %
19 018
2 871
×19,9
0,7 %
Biomasse et déchets
34 851
29 363
11,4 %
54 022
39 325
+34 %
9,3 %
Électricité
-
34 923
13,5 %
-
88 477
+153 %
21,0 %
Chaleur
4
14 072
5,4 %
65
15 074
+7 %
3,6 %
Total
365 571
258 650
100 %
631 032
421 857
+63 %
100 %
Une part importante des énergies primaires est convertie en électricité ou en chaleur de réseau et est donc consommée sous ces deux formes. Afin de retrouver la part de chaque source primaire dans la consommation finale, il faut reventiler les consommations d'électricité et de chaleur selon leur source primaire :
Consommation finale d'énergie, après reventilation des consommations d'électricité[26] et de chaleur[38] selon leur source primaire (Pétajoules)
Type d'énergie
Consom. finale 1990
Part dans la consom.
Consom. finale 2022
Part dans la consom.
Variation consom. 2022/1990
Pétrole
115 273
44,6 %
170 952
40,8 %
+48 %
Gaz naturel
51 840
20,1 %
95 907
22,9 %
+85 %
Charbon
48 751
18,9 %
76 468
18,3 %
+57 %
Total fossiles
215 864
83,5 %
343 327
81,9 %
+59 %
Nucléaire
5 943
2,3 %
8 134
1,9 %
+37 %
Hydroélectricité
6 443
2,5 %
13 528
3,2 %
+110 %
Biomasse et déchets
29 977
11,6 %
42 655
10,2 %
+42 %
Géoth., sol.th.
263
0,1 %
970
0,2 %
+268 %
Éolien
10
0,004 %
6 406
1,5 %
×611
Solaire
3
0,001 %
3 958
0,9 %
×1 132
Total EnR
36 698
14,2 %
67 516
16,1 %
+84 %
Total
258 650
100 %
421 857
100 %
+62 %
La consommation d'énergie a progressé plus rapidement que la population (+62 % contre +49 %), mais sa répartition par source d'énergie est restée assez stable : la part des fossiles n'a baissé que de 1,6 points et celle du nucléaire de 0,4 points, et celle des énergies renouvelables n'a progressé que de 1,9 points, car le développement très rapide de la plupart d'entre elles a été en grande partie compensé par le recul de la part de la biomasse : −1,4 points.
On constate une progression quasi générale et rapide de la part de l'électricité ; cette progression est particulièrement rapide dans les pays émergents : Chine, Inde, Indonésie ; par contre, on constate une légère baisse au cours de la période la plus récente dans quelques pays développés : Allemagne, Russie. Le cas de l'Islande[39] et de la Norvège est très spécifique : leur taux de consommation électrique est très élevé du fait de l'abondance de ressources hydroélectriques à bas coût, qui attirent des industries électro-intensives (fonderies d'aluminium, minage de cryptomonnaie...).
Le total « agriculture et pêche » ci-dessus ne recouvre pas l'alimentation (certaines productions ne sont pas alimentaires, et inversement une bonne partie de la production industrielle — tracteurs, engrais, etc. — et des secteurs des transports, résidentiel et tertiaire sont affectés à l'alimentation) et ne montre pas la place de cette dernière. Elle représentait, selon l'Organisation des Nations unies pour l'alimentation et l'agriculture en 2021, 30 % de la consommation d'énergie mondiale[41]. Dans les pays développés, la répartition de ce total est de 25 % à la production, 45 % pour la transformation et la distribution, et le reste dans le petit commerce, la préparation et la cuisson ; dans les pays en voie de développement, la part de la production est plus faible, et celle de la cuisson plus grande[41].
Consommation d'énergie par habitant
La liste ci-dessous, tirée des statistiques de l'Agence internationale de l'énergie (AIE), ne prend en compte que les pays de plus de 50 millions d'habitants ainsi que les pays européens de plus de 10 millions d'habitants ; les statistiques de l'AIE englobent la quasi-totalité des pays du monde.
Consommation d'énergie primaire et consommation d'électricité par habitant dans le monde en 2022
Selon le rapport 2023 de l'Agence internationale de l'énergie (AIE) sur les investissements mondiaux dans l'énergie, les investissements dans les combustibles fossiles tendent à décliner, passant de 1 319 G$ (milliards de dollars américains) en 2015 à 1 002 G$ en 2022, pendant que les investissements dans les énergies décarbonées progressent, passant de 1 074 G$ en 2015 à 1 617 G$ en 2022, 1 740 G$ étant attendus pour 2023. Les investissements dans les énergies renouvelables électriques sont passés de 451 G$ en 2019 à 596 G$ en 2022 alors que ceux dans les centrales thermiques fossiles ont reculé de 134 G$ en 2019 à 108 G$ en 2022. Les investissements dans les réseaux électriques et le stockage sont passés de 304 G$ en 2019 à 352 G$ en 2022 et ceux dans le nucléaire de 37 G$ en 2019 à 53 G$ en 2022. L'AIE prévoit que les investissements dans le solaire (382 G$) dépasseront en 2023 ceux dans la production de pétrole (371 G$) alors qu'en 2013 les investissements pétroliers étaient cinq fois plus élevés (636 G$ contre 127 G$). Les dépenses de l'industrie pétrolière et gazière vont de moins en moins aux investissements dans le pétrole et le gaz (48 % en 2022 contre 86 % en 2008) et de plus en plus aux dividendes et rachats d'actions (39 % en 2022 contre 14 % en 2008), au désendettement (13 % en 2022) et très peu aux investissements dans les énergies décarbonées (1 %)[45].
Emplois
En 2022, l'Agence internationale de l'énergie (AIE) publie son premier rapport sur l'emploi dans l'énergie. Elle l'estime à 65 millions de personnes en 2019, soit environ 2 % des emplois au niveau mondial, dont 21 millions dans la production de combustibles, 20 millions dans celle d'électricité et 24 millions dans les usages finaux tels que l'efficacité énergétique (bâtiments et industrie) et la fabrication de véhicules routiers[46]. L'AIE estime que les énergies propres emploient plus de 50 % des travailleurs de l'énergie ; la production d'électricité bas carbone en emploie 7,8 millions, à égalité avec la production de pétrole ; la production de véhicules emploie 13,6 millions de personnes, dont 10 % pour les voitures électriques, leurs composants et leurs batteries. Plus de la moitié de l'emploi dans l'énergie se situe dans la région Asie-Pacifique ; la Chine à elle seule compte pour 30 % du total. Plus de 60 % des effectifs sont employés à développer de nouveaux projets. Les emplois à haute qualification comptent pour 45 % du total. L'AIE prévoit une croissance des emplois dans tous ses scénarios, les nouveaux emplois dans les énergies propres compensant le déclin de l'emploi dans les énergies fossiles[47],[48].
Les émissions mondiales de CO2 liées à l'énergie ont atteint en 2023, selon les estimations de l'Energy Institute, 35 130 Mt, en hausse de 1,6 % par rapport à 2022, de 3 % par rapport à 2019 et de 7,4 % depuis 2013. Les émissions de la Chine (32,1 % du total mondial) ont augmenté de 6,1 % en 2023 et de 23,7 % entre 2016 et 2023, après avoir baissé de 2,3 % entre 2014 et 2016 ; celles des États-Unis (13,2 % du total mondial) ont baissé de 3,3 % en 2023 et de 11,6 % depuis 2013 ; celles de l'Inde (9 % du total) ont progressé de 8,4 % en 2023 et de 48,4 % depuis 2013 ; celles de la Russie (4,6 % du total) ont progressé de 1 % en 2023 et de 4,3 % depuis 2013. En Europe (10,1 % du total mondial), elles ont reculé de 6,2 % en 2023 (−9,5 % en Allemagne, −8,2 % en Pologne, −7,3 % en Italie, −6,6 % en France, −5,2 % en Espagne, −4,1 % au Royaume-Uni), et de 20 % depuis 2013[e 13].
Les statistiques de l'Agence internationale de l'énergie, moins récentes mais plus précises, s'élevaient pour 2022 à 34 981 Mt, en progression de 140 % par rapport à 1971[h 1]. Les émissions de CO2 par habitant en 2022 étaient estimées à 4,29 tonnes en moyenne mondiale, en progression de 16 % par rapport à 1971, 13,81 t aux États-Unis, 7,30 t en Allemagne, 4,13 t en France, 7,50 t en Chine (surtout dans l'industrie qui produit en grande partie pour les consommateurs américains et européens…), 1,78 t en Inde et 0,89 t en Afrique[h 2]. Les émissions liées à l'énergie étaient dues pour 43,7 % au charbon[h 3], 32,7 % au pétrole[h 4], 21,3 % au gaz naturel[h 5] et 2,3 % aux déchets non renouvelables.
Ces chiffres rendent compte des émissions de chaque pays mais n'intègrent pas les gaz à effet de serre induits par la production des produits importés ou exportés. L'Institut national de la statistique et des études économiques (France) et le ministère français de la Transition écologique et solidaire ont chiffré les émissions totales des Français à 11,1 tonnes de CO2 par personne en 2012, un chiffre nettement supérieur à l'émission de gaz à effet de serre par habitant sur le territoire national[50].
Par secteur en 2022, les émissions de CO2 par combustion d'énergies fossiles étaient issues pour 48,7 % de l'industrie de l'énergie (surtout lors des transformations : production d'électricité et de chaleur : 43,8 %, raffinage, etc.), 23,3 % des transports (dont transport routier : 17,7 %), 18,4 % de l'industrie, 5,7 % du secteur résidentiel et 2,3 % du secteur tertiaire[h 6] ; mais après réallocation des émissions de la production d'électricité et de chaleur aux secteurs consommateurs, la part de l'industrie passe à 37,7 %, celle des transports à 24 %, celle du secteur résidentiel à 16,9 % et celle du secteur tertiaire à 9,3 %[h 7].
Au niveau mondial, les émissions de CO2 dues à la combustion d'énergies fossiles ont augmenté de 6 % en 2021, selon l'Agence internationale de l'énergie, pour atteindre le niveau record de 36,3 Gt (milliards de tonnes), après avoir reculé de 5,2 % en 2020. Le charbon est responsable de 40 % de l'accroissement des émissions, atteignant un record historique de 15,3 Gt ; le gaz a aussi dépassé le niveau de 2019, à 7,5 Gt ; le pétrole reste au-dessous du niveau de 2019, à 10,7 Gt, les transports n'ayant pas encore complètement repris[51].
Dans le cadre des négociations internationales sur le climat, tous les pays se sont engagés à maintenir la hausse des températures en deçà de +2 °C par rapport à l'ère préindustrielle. Or, pour aboutir à ce résultat, il faudrait que les pays s'abstiennent d'extraire un tiers des réserves de pétrole, la moitié des réserves de gaz et plus de 80 % du charbon disponibles dans le sous-sol mondial, d'ici à 2050. Pays par pays, cela concerne l'essentiel des immenses réserves de charbon qui se trouvent en Chine, en Russie, en Inde et aux États-Unis. Au Moyen-Orient, cela suppose d'abandonner l'idée d'extraire 60 % du gaz et de ne pas toucher à environ 260 milliards de barils de pétrole, l'équivalent de toutes les réserves de l'Arabie saoudite. Il faudrait enfin oublier toute velléité d'exploiter les réserves d'énergies fossiles découvertes en Arctique et s'interdire d'accroître l'exploitation du pétrole non conventionnel (schiste bitumineux, huile de schiste, etc.)[52].
L'Agence internationale de l'énergie avait déjà préconisé, en 2012, de laisser dans le sol plus des deux tiers des réserves prouvées de combustibles fossiles, car notre consommation, d'ici à 2050, ne devra pas représenter plus d'un tiers des réserves prouvées de combustibles fossiles afin de ne pas dépasser les +2 °C de réchauffement global maximal d'ici la fin du siècle[53]. Une étude publiée en 2009 estimait qu'il ne fallait pas émettre plus de 1 000 gigatonnes de CO2 de 2000 à 2050 pour avoir trois chances sur quatre d'éviter un réchauffement supérieur à +2 °C (1 440 gigatonnes pour une chance sur deux), dont 234 gigatonnes déjà émises entre 2000 et 2006. La même étude estimait que la combustion des réserves connues de combustibles fossiles conduirait à l'émission de 2 800 gigatonnes de CO2, soit très largement plus que le budget résiduel[54].
(de) Agence fédérale pour les sciences de la terre et les matières premières, BGR Energiestudie 2023 - Daten und Entwicklungen der deutschen und globalen Energieversorgung [« Données et évolutions de l'approvisionnement allemand et mondial »], , 154 p. (lire en ligne [PDF])
↑Par exemple, pour la Centrale nucléaire de Civaux, les puissances annoncées sont respectivement 4 270 MWth et 1 495 MWe par réacteur, soit un rendement de 35 %.
↑(en) Malte Meinshausen, Nicolai Meinshausen, Bill Hare, Sarah C. B. Raper, Katja Frieler, Reto Knutti, David J. Frame et Myles R. Allen, « Greenhouse-Gas Emission Targets For Limiting Global Warming To 2°C », Nature, vol. 458, no 5242, , p. 1158-62 (DOI10.1038/nature08017, lire en ligne).
(en) « Electricity map » (consulté le ), carte interactive montrant les production, consommation et flux d'électricité ainsi que les ressources éolienne et solaire.
Parish in Louisiana, United States Not to be confused with Jefferson Davis Parish, Louisiana. Parish in LouisianaJefferson ParishParishCity Hall in Gretna FlagLocation within the U.S. state of LouisianaLouisiana's location within the U.S.Coordinates: 29°44′N 90°06′W / 29.73°N 90.1°W / 29.73; -90.1Country United StatesState LouisianaFoundedFebruary 11, 1825Named forThomas JeffersonSeatGretnaLargest communityMetairieArea • Total665 sq...
Slag bij Culpeper Court House Onderdeel van de Amerikaanse Burgeroorlog Datum 13 september 1863 Locatie Culpeper, Virginia Resultaat Noordelijke overwinning Strijdende partijen Verenigde Staten Geconfedereerde Staten Leiders en commandanten Alfred Pleasonton J.E.B. Stuart Troepensterkte 3 cavaleriedisivisies 2 cavaleriedisivisies Verliezen onbekend 100 krijgsgevangenen De Slag bij Culpeper Court House vond plaats op 13 september 1863 in Culpeper, Virginia tijdens de Amerikaanse Burgeroorlog...
Municipio de Dale Municipio Municipio de DaleUbicación en el condado de McLean en Illinois Ubicación de Illinois en EE. UU.Coordenadas 40°26′33″N 89°06′04″O / 40.4425, -89.101111111111Entidad Municipio • País Estados Unidos • Estado Illinois • Condado McLeanSuperficie • Total 89.52 km² • Tierra 89.5 km² • Agua (0.03 %) 0.02 km²Altitud • Media 216 m s. n. m.Población (2010...
American politician Samuel Moffett RalstonUnited States Senatorfrom IndianaIn officeMarch 4, 1923 – October 14, 1925Preceded byHarry Stewart NewSucceeded byArthur Raymond Robinson28th Governor of IndianaIn officeJanuary 13, 1913 – January 8, 1917LieutenantWilliam P. O'NeillPreceded byThomas R. MarshallSucceeded byJames P. Goodrich Personal detailsBornDecember 1, 1857New Cumberland, Ohio, U.S.DiedOctober 14, 1925(1925-10-14) (aged 67)Indianapolis, Indiana, U.S.Po...
This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Comuneros TransMilenio – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) ComunerosGeneral informationLocationAvenida NQS between Calles 3 and 5ALos Mártires and Puente ArandaColombiaHistoryOpened2005Services ...
Degollamiento de víctima sacrificial. El sacrificio constituye el «corazón» de la mayor parte de los rituales religiosos de la Antigua Grecia y, al igual que los otros ritos, adopta también formas diversas, hasta el punto de que, en Grecia, resulta más apropiado hablar de los sacrificios.Sin embargo, durante la Grecia Clásica, se impuso sobre los demás un tipo especial de sacrificio en la práctica colectiva de la polis, para expresar al mismo tiempo los lazos de solidaridad entre los...
1978 في اليابانمعلومات عامةالسنة 1978 1977 في اليابان 1979 في اليابان تعديل - تعديل مصدري - تعديل ويكي بيانات سنوات 1976 1977 1978 1979 1980 علم اليابان الجدول الزمني لتاريخ اليابان فيما يلي قوائم الأحداث التي وقعت خلال عام 1978 في اليابان. سياسة تعيين في المنصب 7 ديسمبر – ماسايوشي أوهيرا رئيس وز
WK voetbal 2018 Mexico Zweden 0 3 Dit artikel gaat over de wedstrijd in de groepsfase in groep F tussen Mexico en Zweden die gespeeld werd op woensdag 27 juni 2018 tijdens het wereldkampioenschap voetbal 2018. Het duel was de tweeënveertigste wedstrijd van het toernooi. Voorafgaand aan de wedstrijd Mexico stond bij aanvang van het toernooi op de vijftiende plaats van de FIFA-wereldranglijst.[1] Zweden stond bij aanvang van het toernooi op de vierentwintigste plaats van de FIFA-wereld...
Not to be confused with Princeton Township, New Jersey or Borough of Princeton, New Jersey. Borough in New Jersey, United StatesPrinceton, New JerseyBoroughLower Pyne building on the corner of Nassau Street and Witherspoon Street, 2015Nassau Street northbound in Downtown Princeton, 2017Princeton station, 2020McCarter Theatre, 2018Nassau Hall on the campus of Princeton University, 2019Princeton Battlefield, 2007Palmer Square, 2013Institute for Advanced Study, 2023 SealLocation of Princeton in ...
Ahmad Najib QodratullahS.E.Anggota Dewan Perwakilan Rakyat Republik IndonesiaPetahanaMulai menjabat 1 Oktober 2014PresidenSusilo Bambang Yudhoyono Joko WidodoDaerah pemilihanJawa Barat II Informasi pribadiLahir26 September 1977 (umur 46)Bandung, Jawa BaratPartai politik PANSuami/istriYuyun YuningsihAnak3Alma materSTIE KridatamaPekerjaanPolitikusSunting kotak info • L • B Ahmad Najib Qodratullah, S.E. (lahir 26 September 1977) adalah politikus Indonesia yang m...
Termination of a pregnancy For other uses, see Abortion (disambiguation). AbortionOther namesInduced miscarriage, termination of pregnancySpecialtyObstetrics and gynecologyICD-10-PCS10A0ICD-9-CM779.6MeSHD000028MedlinePlus007382eMedicine252560[edit on Wikidata] Abortion is the termination of a pregnancy by removal or expulsion of an embryo or fetus.[nb 1] An abortion that occurs without intervention is known as a miscarriage or spontaneous abortion; these occur in approximately 30%...
Ця стаття не містить посилань на джерела. Ви можете допомогти поліпшити цю статтю, додавши посилання на надійні (авторитетні) джерела. Матеріал без джерел може бути піддано сумніву та вилучено. (квітень 2019) Магнезитова плита (МП) — універсальний будівельно-оздоблюва...
Artikel ini bukan mengenai Suku Hubla. Orang HubulaHuwula, Dani, Parim, BalimSeorang lelaki Dani dengan dua buah taring babi yang menandakan bahwa ia seorang prajurit perangDaerah dengan populasi signifikanIndonesia: Papua Pegunungan Bahasabahasa DaniAgamaMayoritasProtestan & Katolik (95%) Minoritas(5%) yang beragama Islam, Animisme, Animatisme, Dinamisme dan TotemKelompok etnik terkaitHupla, Lani, Walak, Wano, Nduga Suku Dani atau Hubula adalah sekelompok suku yang mendiami wilayah Lemba...
Australian rugby league footballer Ben RidgeRidge playing for the Titans in 2011.Personal informationBorn (1989-12-13) 13 December 1989 (age 33)Toowoomba, Queensland, AustraliaPlaying informationHeight186 cm (6 ft 1 in)Weight102 kg (16 st 1 lb)PositionSecond-row, Lock Club Years Team Pld T G FG P 2010–15 Gold Coast Titans 58 1 0 0 4 Source: Rugby League Project Ben Ridge (born 13 December 1989) is an Australian former professional rugby league football...
Canadian movie theater chain This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Scotiabank Theatre – news · newspapers · books · scholar · JSTOR (May 2018) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced materia...
American TV series or program Mighty MedGenre Comedy Superhero[1] Created by Jim Bernstein Andy Schwartz Starring Bradley Steven Perry Jake Short Paris Berelc Devan Leos Augie Isaac Theme music composer Todd P. Andrew Douglas Starling Jones Christian Salyer Opening themeYou Never Know performed by Brandon Mychal Smith & Adam HicksEnding themeYou Never Know (instrumental)ComposerJamie DunlapCountry of originUnited StatesOriginal languageEnglishNo. of seasons2No. of episodes44 ...
For the mountain in San Marino, see Monte Titano. For the prefix Titano- as used in taxonomy, see List of commonly used taxonomic affixes. Comics character TitanoTitano attacking the Daily Planet building in the style of King Kong, from Showcase Presents Superman Volume 2 (2006).Art by Curt Swan and George Klein.Publication informationPublisherDC ComicsFirst appearanceSuperman #127 (February 1959)Created byOtto BinderCurt SwanIn-story informationAlter egoTotoSpeciesMeta-ChimpanzeePlace of ori...
United States presidential campaign Hubert Humphrey for President 1968Campaign1968 Democratic primaries1968 U.S. presidential electionCandidateHubert Humphrey38th Vice President of the United States(1965–1969)Edmund MuskieU.S. Senator from Maine(1959–1980)AffiliationDemocratic PartyStatusAnnounced: April 27, 1968Official nominee: August 29, 1968Lost election: November 5, 1968SloganSome People Talk Change, Others Cause ItHumphrey-Muskie, Two You Can Trust[1] Hubert Humphrey 1968 or...
Annual race in China held since 1997 This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (June 2022) (Learn how and when to remove this template message) Hong Kong MarathonHong Kong Marathon in West Kow...
Culture of the Indian state of Jharkhand The state of Jharkhand in India is located in the eastern part of the country and is known for its vivid culture, distinct paintings, traditions and festivals.[1] Languages Hindi is the official language of Jharkhand. There are many regional and tribal languages in Jharkhand.[1] The regional languages that belong to the Indo-Aryan branch; in Jharkhand, they are Khortha, Nagpuri, and Kudmali spoken by the Sadan, the Indo-Aryan ethnic gro...