Trenbolone acetate was discovered in 1963 and was introduced for veterinary use in the early 1970s.[5][10][11] In addition to its veterinary use, trenbolone acetate is used to improve physique and performance, for which purpose it is purchased from black market suppliers.[5] The drug is a controlled substance in many countries and so non-veterinary use is generally illicit.[5]
Uses
Veterinary uses
In the livestock industry, trenbolone acetate is more often called Finaplix. It was intentionally developed to promote androgen and gain muscle mass in cattle. Due to its properties, this allows livestock to grow as much muscle as possible before they are transported to a slaughterhouse.
Methyl cellulose and yellow dye are usually present in pellets given to livestock. A single dosage generally consists of ten pellets, and a package of Finaplix usually consists of one cartridge containing one hundred pellets. The medication is administered by subcutaneous injection into the posterior ear using an implanter gun. Finaplix is consistently implanted until the animal is ready to be slaughtered. There is no withholding period.[clarification needed] Due to the common practice of trenbolone acetate use in veterinary medicine, it is quite common to find traces of trenbolonemetabolites in cattle worldwide.[10][12]
Non-medical uses
Bodybuilding
Trenbolone acetate has never been approved for use in humans and therefore guidelines for human consumption do not exist.[5] However, athletes and bodybuilders have been using trenbolone acetate as a physique- and performance-enhancing drug for decades. Some argue there are many benefits for bodybuilder's using trenbolone acetate as an AAS. Unlike exogenous testosterone, trenbolone acetate does not cause fluid retention,[10] so bodybuilders appear leaner; therefore, it is more commonly used during preparation for competitive events. Trenbolone acetate does not convert into an estrogenicmetabolite;[10] thus there are no estrogenic side effects.[5]Trenbolone enanthate is a commonly used AAS and lasts much longer than trenbolone acetate with intramuscular injection.[5]
Medical uses
Trenbolone acetate was never approved for use in humans and hence has no medical uses.[5] However, as an AAS, it would be expected to be effective for treating indications in which other AAS are useful, such as androgen deficiency, wasting syndromes, muscle atrophy, and certain types of anemia.[5][13]
Trenbolone acetate, like any other AAS, has many side effects.[7][14][15] Its strong androgenic properties stimulate virilization,[7] making it unsuitable for women pursuing physique or performance enhancement.[5] The side effects of trenbolone acetate are similar to other AAS; however, the negative side effects specific to trenbolone acetate are as follows:
Trenbolone acetate contributes greatly to development of muscle mass and feed efficiency; however, administration of any AAS suppresses natural testosterone production and therefore has the potential to cause hypogonadism.[5][14][19]
Cardiovascular
Administration of any AAS can lead to cardiovascular issues.[20] Trenbolone acetate can have a strongly negative impact on cholesterol levels by suppressing high-density lipoprotein (HDL) cholesterol production and stimulating low-density lipoprotein (LDL) cholesterol production.[21] When compared to oral AAS, trenbolone acetate exerts a stronger negative effect on cholesterol levels.[22]
Trenbolone acetate is a prodrug of trenbolone.[2][5] Like other AAS, trenbolone is an agonist of the androgen receptor (AR) and hence has anabolic and androgenic activity as well as antigonadotropic activity.[5][2][8][17] The potency of Trenbolone is not known, although it's often falsely believed to be five times high as that of testosterone.[28][29] This is based on a book by William Llewellyn but has not been definitively proven. Trenbolone was never approved for human use, and therefore limited data on the subject exists. The relevant literature, is usually done in rats, which makes the 500/100 potency number inaccurate. Rats respond differently to androgens and are less sensitive to androgens. While some literature report a 5 fold higher potency, two other scientific reviews report a 3 fold higher potency, which makes it unclear as to how large the relative potency actually is.[30][31] Trenbolone is an agonist of the progesterone receptor (PR), and in relation to this, has moderate to strong progestogenic activity.[5][8][17] Conversely, trenbolone acetate is not a substrate for aromatase and hence lacks estrogenic activity.[5][2][8] The compound also has weak glucocorticoid activity.[8][9]
Similar to many other AAS, trenbolone acetate has the capability to produce insulin-like growth factor-1 (IGF-1).[32][33] This naturally produced protein-based hormone affects every cell in the body of an organism and plays a large role in muscle recovery and rejuvenation. Extreme muscle growth and cell splitting compared is facilitated through trenbolone acetate administration when compared to other AAS.[32] The facilitation of IGF-1 plays a significant role in the functions and properties of the central nervous system, pulmonary system, muscle tissue, ligaments, cartilage, and tendons.[33]
Trenbolone acetate also has the ability to increase red blood cell count. With a larger amount of red blood cells, blood oxygenation is enhanced. This allows for enhanced muscular endurance and therefore promotes a faster rate of recovery. Trenbolone acetate is capable of inhibiting glucocorticoids such as cortisol.[citation needed] The properties of glucocorticoid are the opposite of androgens as muscle tissue depletion and fat gain is promoted.[34] Administration of trenbolone acetate aims at decreasing the production of glucocorticoid hormones. Trenbolone acetate’s contribution to feed efficiency, also known as nutrient efficiency is what makes it an attractive AAS used for agricultural purposes. Food is one of the most anabolic substances that any living organism can consume, and therefore with the administration of trenbolone acetate, every nutrient in the body becomes a lot more valuable.[35] This facilitates an organism's body that is exposed to the AAS to make better use of the nutrients already consumed.[10][35]
Pharmacokinetics
The acetate ester of trenbolone acetate allows for slow release post injection. This ester gives trenbolone an activated elimination half-life of about 3 days.[1]
Trenbolone acetate is a modified form of nandrolone.[16] The structure of trenbolone acetate is a 19-nor classification, which represents a structural change of the testosterone hormone. Trenbolone acetate lacks a carbon atom at the 19 position and carries a double bond at carbons 9 and 11. The position of these carbons slows its metabolism, which greatly increases its binding affinity to the AR, and inhibits it from undergoing aromatization into the corresponding estrogenic metabolite. Trenbolone acetate contains trenbolone modified with the addition of a carboxylic acid ester (acetic acid) at the 17β-hydroxyl group.[10] This facilitates the slow release of the AAS from the area of injection.
History
Trenbolone acetate was first synthesized in 1963 and approved by the livestock industry as a growth promoter for beef cattle in the early 1970s.[5][10][11] During this period of its first administration, trenbolone acetate was sold under the names Finajet and Finaject. The original manufacturer of trenbolone acetate discontinued during the late 1980s and administered the synthesis of subcutaneous pellets called Finaplix. These pellets aimed to increase muscle mass and lean tissue of cattle prior to slaughter to increase the profitability of livestock when measured in total pounds of meat sold.[10]
The drug appears to have been an early development project of Roussel Uclaf, a French pharmaceutical company, and by the early 1970s, it was being sold as an injectable.[18] There are a number of trenbolone esters but trenbolone acetate is the only one known to be produced in veterinary AAS manufacturers.
Trenbolone acetate became popular among bodybuilders and athletes during the early 1980s. During this period, the AAS was transported illegally from Europe in large quantities. Although trenbolone acetate was very popular for a short amount of time, the large amounts of supplies were discontinued in 1987.[10] This decision was based upon the public concern of sports doping and its negative effects on athletes.[5]
Society and culture
Generic names
Trenbolone acetate is the generic name of the drug and its USANTooltip United States Adopted Name, USPTooltip United States Pharmacopeia, and BANMTooltip British Approved Name.[3][4][36][37]
Brand names
Trenbolone acetate is or has been sold alone for veterinary use under the brand names Component TH, Component TS, Finaject, Finajet, Finaplix-H, and Finaplix-S.[3][4][5][36][37] It is or has also been sold in combination with estradiol or estradiol benzoate for veterinary use under the brand names Revalor and Synovex.[3][4][5][36][37]
Distribution and regulation
Trenbolone acetate, specifically referred to as Finaplix in the livestock industry, is available to purchase in veterinary drug markets.[5] A typical cartridge usually comes in the form of 20 mg pellets. It generally comes in the form of implant pellets containing 20 mg of trenbolone acetate each.[36] Preparations containing trenbolone acetate remain rare since its decline in production after the 1980s. Using AAS for any other purpose, or without a doctor's prescription, is illegal in most countries. Major sporting and bodybuilding organizations ban the use of controlled AAS, and the possession or sale of drugs can lead to arrest and conviction of drug-trafficking in many countries, including the United States and Australia. However, in the United Kingdom, owning AAS for personal use as a bodybuilding supplement is not illegal, but selling the AAS without a valid medical license or reason is still against the law.[38][39]
Regardless of their legality, AAS are still banned by most sporting leagues in the country, who routinely conduct drug tests to find the users of any AAS. There are known cases of doping in sports with trenbolone acetate by professionalathletes.
^Zarkawi M, Galbraith H, Hutchinson JS (April 1991). "The action of trenbolone acetate, a synthetic anabolic steroid, on ovarian function in the guinea pig". Laboratory Animals. 25 (2): 117–121. doi:10.1258/002367791781082586. PMID1857092. S2CID31765638.
^ abcdeMeyer HH, Rapp M (1985). "Reversible binding of the anabolic steroid trenbolone to steroid receptors". European Journal of Endocrinology. 110 (1 Suppla): S129 –S130. doi:10.1530/acta.0.109S129. ISSN0804-4643.
^ abGasparini M, Curatolo M, Assini W, Bozzoni E, Tognoli N, Dusi G (November 2009). "Confirmatory method for the determination of nandrolone and trenbolone in urine samples using immunoaffinity cleanup and liquid chromatography-tandem mass spectrometry". Journal of Chromatography A. 1216 (46): 8059–8066. doi:10.1016/j.chroma.2009.04.075. PMID19447393.
^ abcBauer ER, Daxenberger A, Petri T, Sauerwein H, Meyer HH (December 2000). "Characterisation of the affinity of different anabolics and synthetic hormones to the human androgen receptor, human sex hormone binding globulin and to the bovine progestin receptor". APMIS. 108 (12): 838–846. doi:10.1111/j.1600-0463.2000.tb00007.x. PMID11252818. S2CID22776408.
^ abSillence MN, Rodway RG (September 1990). "Effects of trenbolone acetate and testosterone on growth and on plasma concentrations of corticosterone and ACTH in rats". The Journal of Endocrinology. 126 (3): 461–466. doi:10.1677/joe.0.1260461. PMID2170557.
^Yarrow JF, McCoy SC, Borst SE (June 2010). "Tissue selectivity and potential clinical applications of trenbolone (17beta-hydroxyestra-4,9,11-trien-3-one): A potent anabolic steroid with reduced androgenic and estrogenic activity". Steroids. 75 (6): 377–389. doi:10.1016/j.steroids.2010.01.019. PMID20138077.
^ abKamanga-Sollo E, White ME, Hathaway MR, Chung KY, Johnson BJ, Dayton WR (July 2008). "Roles of IGF-I and the estrogen, androgen and IGF-I receptors in estradiol-17beta- and trenbolone acetate-stimulated proliferation of cultured bovine satellite cells". Domestic Animal Endocrinology. 35 (1): 88–97. doi:10.1016/j.domaniend.2008.02.003. PMID18403176.
^ abGriffiths TW (2010). "Effects of trenbolone acetate and resorcylic acid lactone on protein metabolism and growth in steers". Animal Production. 34 (3): 309–314. doi:10.1017/S0003356100010254. ISSN0003-3561.