Bisphenol A (BPA) is a chemical compound primarily used in the manufacturing of various plastics. It is a colourless solid which is soluble in most common organic solvents, but has very poor solubility in water.[2][7] BPA is produced on an industrial scale by the condensation reaction of phenol and acetone. Global production in 2022 was estimated to be in the region of 10 million tonnes.[8]
The health effects of BPA have been the subject of prolonged public and scientific debate.[12][13][14] BPA is a xenoestrogen, exhibiting hormone-like properties that mimic the effects of estrogen in the body.[15] Although the effect is very weak,[16] the pervasiveness of BPA-containing materials raises concerns, as exposure is effectively lifelong. Many BPA-containing materials are non-obvious but commonly encountered,[17] and include coatings for the inside of food cans,[18] clothing designs,[19] shop receipts,[20] and dental fillings.[21] BPA has been investigated by public health agencies in many countries, as well as by the World Health Organization.[12] While normal exposure is below the level currently associated with risk, several jurisdictions have taken steps to reduce exposure on a precautionary basis, in particular by banning BPA from baby bottles. There is some evidence that BPA exposure in infants has decreased as a result of this.[22] BPA-free plastics have also been introduced, which are manufactured using alternative bisphenols such as bisphenol S and bisphenol F, but there is also controversy around whether these are actually safer.[23][24][25]
In 1934, workers at I.G. Farbenindustrie reported the coupling of BPA and epichlorohydrin. Over the following decade, coatings and resins derived from similar materials were described by workers at the companies of DeTrey Freres in Switzerland and DeVoe and Raynolds in the US. This early work underpinned the development of epoxy resins, which in turn motivated production of BPA.[27] The utilization of BPA further expanded with discoveries at Bayer and General Electric on polycarbonateplastics. These plastics first appeared in 1958, being produced by Mobay, General Electric, and Bayer.[28]
The British biochemist Edward Charles Dodds tested BPA as an artificial estrogen in the early 1930s.[29][30][31] Subsequent work found that it bound to estrogen receptors tens of thousands of times more weakly than estradiol, the major natural female sex hormone.[32][16] Dodds eventually developed a structurally similar compound, diethylstilbestrol (DES), which was used as a synthetic estrogen drug in women and animals until it was banned due to its risk of causing cancer; the ban on use of DES in humans came in 1971 and in animals, in 1979.[29] BPA was never used as a drug.[29]
Production
The synthesis of BPA still follows Dianin's general method, with the fundamentals changing little in 130 years. The condensation of acetone (hence the suffix 'A' in the name)[33] with two equivalents of phenol is catalyzed by a strong acid, such as concentrated hydrochloric acid, sulfuric acid, or a solid acid resin such as the sulfonic acid form of polystyrene sulfonate.[34] An excess of phenol is used to ensure full condensation and to limit the formation of byproducts, such as Dianin's compound. BPA is fairly cheap to produce, as the synthesis benefits from a high atom economy and large amounts of both starting materials are available from the cumene process.[7] As the only by-product is water, it may be considered an industrial example of green chemistry. Global production in 2022 was estimated to be in the region of 10 million tonnes.[8]
Usually, the addition of acetone takes place at the para position on both phenols, however minor amounts of the ortho-para (up to 3%) and ortho-ortho isomers are also produced, along with several other minor by‑products.[35] These are not always removed and are known impurities in commercial samples of BPA.[36][35]
About 65–70% of all bisphenol A is used to make polycarbonate plastics,[9][10] which can consist of nearly 90% BPA by mass. Polymerisation is achieved by a reaction with phosgene, conducted under biphasic conditions; the hydrochloric acid is scavenged with aqueous base.[43] This process converts the individual molecules of BPA into large polymer chains, effectively trapping them.
Some of this is further reacted with methacrylic acid to form bis-GMA, which is used to make vinyl ester resins. Alternatively, and to a much lesser extent, BPA may be ethoxylated and then converted to its diacrylate and dimethacrylate derivatives (bis-EMA, or EBPADMA). These may be incorporated at low levels in vinyl ester resins to change their physical properties[46] and see common use in dental composites and sealants.[47][48]
Minor uses
The remaining 5% of BPA is used in a wide range of applications, many of which involve plastic.[49] BPA is a main component of several high-performance plastics, the production of these is low compared to other plastics but still equals several thousand tons a year. Comparatively minor amounts of BPA are also used as additives or modifiers in some commodity plastics. These materials are much more common but their BPA content will be low.
Polyetherimides such as Ultem can be produced from BPA via a nitro-displacement of appropriate bisnitroimides.[51][52] These thermoplasticpolyimide plastics have exceptional resistance to mechanical, thermal and chemical damage. They are used in medical devices and other high performance instrumentation.
PVC can contain BPA and its derivatives through multiple routes. BPA is sometimes used as an antioxidant in phthalates,[58] which are extensively used as plasticizers for PVC. BPA has also been used as an antioxidant to protect sensitive PVC heat stabilizers. Historically 5–10% by weight of BPA was included in barium-cadmium types, although these have largely been phased out due health concerns surrounding the cadmium. BPA diglycidyl ether (BADGE) is used as an acid scavenger, particularly in PVC dispersions, such as organosols or plastisols,[59][60] which are used as coatings for the inside of food cans, as well as embossed clothes designs produced using heat transfer vinyl or screen printing machines.[19]
BPA is used to form a number of flame retardants used in plastics.[61] Bromination of BPA forms tetrabromobisphenol A (TBBPA), which is mainly used as a reactive component of polymers, meaning that it is incorporated into the polymer backbone. It is used to prepare fire-resistant polycarbonates by replacing some bisphenol A. A lower grade of TBBPA is used to prepare epoxy resins, used in printed circuit boards. TBBPA is also converted to tetrabromobisphenol-A-bis(2,3,-dibromopropyl ether) (TBBPA-BDBPE) which can be used as a flame retardant in polypropylene. TBBPA-BDBPE is not chemically bonded to the polymer and can leach out into the environment.[62] The use of these compounds is diminishing due to restrictions on brominated flame retardants. The reaction of BPA with phosphorus oxychloride and phenol forms bisphenol-A bis(diphenyl phosphate) (BADP), which is used as a liquid flame retarder in some high performance polymer blends such as polycarbonate/ABS mixtures.[63]
Other applications
BPA is used as an antioxidant in several fields, particularly in brake fluids.[64]
BPA is used as a developing agent in thermal paper (shop receipts).[20] Recycled paper products can also contain BPA,[65] although this can depend strongly on how it is recycled. Deinking can remove 95% of BPA,[9] with the pulp produced used to make newsprint, toilet paper and facial tissues. If deinking is not performed then the BPA remains in the fibers, paper recycled this way is usually made into corrugated fiberboard.[9]
Concerns about the health effects of BPA have led some manufacturers replacing it with other bisphenols, such as bisphenol S and bisphenol F. These are produced in a similar manner to BPA, by replacing acetone with other ketones, which undergo analogous condensation reactions.[7] Thus, in bisphenol F, the F signifies formaldehyde.
Health concerns have also been raised about these substitutes.[66][24] Alternative polymers, such as tritan copolyester have been developed to give the same properties as polycarbonate (durable, clear) without using BPA or its analogues.
As a result of the presence of BPA in plastics and other commonplace materials, most people are frequently exposed to trace levels of BPA.[67][68][69] The primary source of human exposure is via food, as epoxy and PVC are used to line the inside of food cans to prevent corrosion of the metal by acidic foodstuffs. Polycarbonate drink containers are also a source of exposure, although most disposable drinks bottles are actually made of PET, which contains no BPA. Among the non-food sources, exposure routes include through dust,[10] thermal paper,[20] clothing,[19] dental materials,[70] and medical devices.[17] Although BPA exposure is common it does not accumulate within the body, with toxicokinetic studies showing the biological half-life of BPA in adult humans to be around two hours.[71][72] The body first converts it into more water-soluble compounds via glucuronidation or sulfation, which are then removed from the body through the urine. This allows exposure to be easily determined by urine testing, facilitating convenient biomonitoring of populations.[22][17][73] Food and drink containers made from Bisphenol A-containing plastics do not contaminate the content to cause any increased cancer risk.[74]
The health effects of BPA have been the subject of prolonged public and scientific debate,[12][13][14] with PubMed listing more than 18,000 scientific papers as of 2024.[75] Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical.[76] These interactions are all very weak, but exposure to BPA is effectively lifelong, leading to concern over possible cumulative effects. Studying this sort of long‑term, low‑dose interaction is difficult, and although there have been numerous studies, there are considerable discrepancies in their conclusions regarding the nature of the effects observed as well as the levels at which they occur.[12] A common criticism is that industry-sponsored trials tend to show BPA as being safer than studies performed by academic or government laboratories,[14][77] although this has also been explained in terms of industry studies being better designed.[13][78]
In the 2010s public health agencies in the EU,[79][80][81] US,[82][83] Canada,[84] Australia[85] and Japan as well as the WHO[12] all reviewed the health risks of BPA, and found normal exposure to be below the level currently associated with risk. Regardless, due to the scientific uncertainty, many jurisdictions continued to take steps to reduce exposure on a precautionary basis. In particular, infants were considered to be at greater risk,[86] leading to bans on the use of BPA in baby bottles and related products by the US,[87] Canada,[88] and EU[89] amongst others. Bottle producers largely switched from polycarbonate to polypropylene and there is some evidence that BPA exposure in infants has decreased as a result of this.[22] The European Food Safety Authority completed a re-evaluation into the risks of BPA in 2023, concluding that its tolerable daily intake should be greatly reduced.[90] This lead to a European Union on 19 December 2024 to ban BPA in all the food contact materials, including plastic and coated packaging. The ban will come into force after an implementation period of up to three years.
BPA exhibits very low acute toxicity (i.e. from a single large dose) as indicated by its LD50 of 4 g/kg (mouse). Reports indicate that it is a minor skin irritant as well, although less so than phenol.[7]
Bisphenol A's interacts with the estrogen-related receptor γ (ERR-γ). This orphan receptor (endogenous ligand unknown) behaves as a constitutive activator of transcription. BPA seems to bind strongly to ERR-γ (dissociation constant = 5.5 nM), but only weakly to the ER.[92] BPA binding to ERR-γ preserves its basal constitutive activity.[92] It can also protect it from deactivation from the SERM 4-hydroxytamoxifen (afimoxifene).[92] This may be the mechanism by which BPA acts as a xenoestrogen.[92] Different expression of ERR-γ in different parts of the body may account for variations in bisphenol A effects. BPA has also been found to act as an agonist of the GPER (GPR30).[93]
Environmental safety
Distribution and degradation
BPA has been detectable in the natural environment since the 1990s and is now widely distributed.[94] It is primarily a river pollutant,[95] but has also been observed in the marine environment,[96] in soils,[97] and lower levels can also be detected in air.[98] The solubility of BPA in water is low (~300 g per ton of water)[2] but this is still sufficient to make it a significant means of distribution into the environment.[97] Many of the largest sources of BPA pollution are water-based, particularly wastewater from industrial facilities using BPA.
Paper recycling can be a major source of release when this includes thermal paper,[9][99]leaching from PVC items may also be a significant source,[95] as can landfill leachate.[100]
In all cases, wastewater treatment can be highly effective at removing BPA, giving reductions of 91–98%.[101] Regardless, the remaining 2–9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the U.S. and Europe.[102]
Once in the environment BPA is aerobically biodegraded by a wide a variety of organisms.[94][103][104] Its half life in water has been estimated at between 4.5 and 15 days, degradation in the air is faster than this, while soil samples degrade more slowly.[97] BPA in sediment degrades most slowly of all, particularly where this is anaerobic. Abiotic degradation has been reported, but is generally slower than biodegradation. Pathways include photo-oxidation, or reactions with minerals such as goethite which may be present in soils and sediments.[105]
Environmental effects
BPA is an environmental contaminant of emerging concern.[100] Despite its short half-life and non-bioaccumulating character, the continuous release of BPA into the environment causes continuous exposure to both plant[106] and animal life. Although many studies have been performed, these often focus on a limited range of model organisms and can use BPA concentrations well beyond environmental levels.[107] As such, the precise effects of BPA on the growth, reproduction, and development of aquatic organism are not fully understood.[107] Regardless, the existing data shows the effects of BPA on wildlife to be generally negative.[108][109] BPA appears able to affect development and reproduction in a wide range of wildlife,[109][110] with certain species being particularly sensitive, such as invertebrates and amphibians.[108]
4-tert-Butylphenol - used as a chain-length regulator in the production of polycarbonates and epoxy resins, it has also been studied as a potential endocrine disruptor
^ abcShareef A, Angove MJ, Wells JD, et al. (11 May 2006). "Aqueous Solubilities of Estrone, 17β-Estradiol, 17α-Ethynylestradiol, and Bisphenol A". Journal of Chemical & Engineering Data. 51 (3): 879–881. doi:10.1021/je050318c.
^ abMitrofanova SE, Bakirova IN, Zenitova LA, et al. (September 2009). "Polyurethane varnish materials based on diphenylolpropane". Russian Journal of Applied Chemistry. 82 (9): 1630–1635. doi:10.1134/S1070427209090225. S2CID98036316.
^ abcdefgEuropean Commission. Joint Research Centre. Institute for Health Consumer Protection (2010). Updated European Union risk assessment report : 4,4'-isopropylidenediphenol (bisphenol-A) : environment addendum of February 2008. Publications Office. p. 6. doi:10.2788/40195. ISBN9789279175428.
^Egan M (2013). "Sarah A. Vogel. Is It Safe? BPA and the Struggle to Define the Safety of Chemicals". Isis. 105 (1). Berkeley: University of California Press: 254. doi:10.1086/676809. ISSN0021-1753.
^Noonan GO, Ackerman LK, Begley TH (July 2011). "Concentration of bisphenol A in highly consumed canned foods on the U.S. market". Journal of Agricultural and Food Chemistry. 59 (13): 7178–7185. Bibcode:2011JAFC...59.7178N. doi:10.1021/jf201076f. PMID21598963.
^ abcHuang RP, Liu ZH, Yin H, et al. (June 2018). "Bisphenol A concentrations in human urine, human intakes across six continents, and annual trends of average intakes in adult and child populations worldwide: A thorough literature review". The Science of the Total Environment. 626: 971–981. Bibcode:2018ScTEn.626..971H. doi:10.1016/j.scitotenv.2018.01.144. PMID29898562. S2CID49194096.
^ abChen D, Kannan K, Tan H, et al. (7 June 2016). "Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review". Environmental Science & Technology. 50 (11): 5438–5453. Bibcode:2016EnST...50.5438C. doi:10.1021/acs.est.5b05387. PMID27143250.
А. Дианина (1891) "О продуктахъ конденсацiи кетоновъ съ фенолами" (On condensation products of ketones with phenols), Журнал Русского физико-химического общества (Journal of the Russian Physical Chemistry Society), 23 : 488-517, 523–546, 601–611; see especially pages 491-493 ("Диметилдифенолметань" (dimethyldiphenolmethane)).
^De Angelis A, Ingallina P, Perego C (March 2004). "Solid Acid Catalysts for Industrial Condensations of Ketones and Aldehydes with Aromatics". Industrial & Engineering Chemistry Research. 43 (5): 1169–1178. doi:10.1021/ie030429+.
^Okada K (July 1996). "X-ray crystal structure analyses and atomic charges of color former and developer. I. Color developers". Journal of Molecular Structure. 380 (3): 223–233. Bibcode:1996JMoSt.380..223O. doi:10.1016/0022-2860(95)09168-8.
^Wolak JE, Knutson J, Martin JD, et al. (1 December 2003). "Dynamic Disorder and Conformer Exchange in the Crystalline Monomer of Polycarbonate". The Journal of Physical Chemistry B. 107 (48): 13293–13299. doi:10.1021/jp036527q.
^"4,4'-isopropylidenediphenol". sdbs.db.aist.go.jp. Spectral Database for Organic Compounds (SDBS). Retrieved 8 August 2024.
^Kroschwitz JI (1998). Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 5 (5 ed.). Wiley. p. 8. ISBN978-0-471-52695-7.
^Gonçalves F, Kawano Y, Pfeifer C, et al. (August 2009). "Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites". European Journal of Oral Sciences. 117 (4): 442–446. doi:10.1111/j.1600-0722.2009.00636.x. PMID19627357.
^Sideridou I, Tserki V, Papanastasiou G (April 2002). "Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins". Biomaterials. 23 (8): 1819–1829. doi:10.1016/S0142-9612(01)00308-8. PMID11950052.
^Sideridou ID, Achilias DS (July 2005). "Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC". Journal of Biomedical Materials Research Part B: Applied Biomaterials. 74B (1): 617–626. doi:10.1002/jbm.b.30252. PMID15889433.
^Hamerton I (1994). Chemistry and technology of cyanate ester resins (1st ed.). London: Blackie Academic & Professional. ISBN978-0-7514-0044-1.
^Takekoshi T, Kochanowski JE, Manello JS, et al. (June 1985). "Polyetherimides. I. Preparation of dianhydrides containing aromatic ether groups". Journal of Polymer Science: Polymer Chemistry Edition. 23 (6): 1759–1769. Bibcode:1985JPoSA..23.1759T. doi:10.1002/pol.1985.170230616.
^Lau KS (2014). "10 - High-Performance Polyimides and High Temperature Resistant Polymers". Handbook of thermoset plastics (3rd ed.). San Diego: William Andrew. pp. 319–323. ISBN978-1-4557-3107-7.
^Laza JM, Veloso A, Vilas JL (10 January 2021). "Tailoring new bisphenol a ethoxylated shape memory polyurethanes". Journal of Applied Polymer Science. 138 (2): 49660. doi:10.1002/app.49660. S2CID224955435.
^Król P (2008). Linear polyurethanes : synthesis methods, chemical structures, properties and applications. Leiden: VSP. pp. 11–14. ISBN9789004161245.
^Shah AC, Poledna DJ (September 2003). "Review of PVC dispersion and blending resin products". Journal of Vinyl and Additive Technology. 9 (3): 146–154. doi:10.1002/vnl.10076. S2CID98016356.
^Shah AC, Poledna DJ (September 2002). "Review of specialty PVC resins". Journal of Vinyl and Additive Technology. 8 (3): 214–221. doi:10.1002/vnl.10365. S2CID97146596.
^Gauthier LT, Laurich B, Hebert CE, et al. (20 August 2019). "Tetrabromobisphenol-A-Bis(dibromopropyl ether) Flame Retardant in Eggs, Regurgitates, and Feces of Herring Gulls from Multiple North American Great Lakes Locations". Environmental Science & Technology. 53 (16): 9564–9571. Bibcode:2019EnST...53.9564G. doi:10.1021/acs.est.9b02472. PMID31364365. S2CID198998658.
^Pawlowski KH, Schartel B (November 2007). "Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile–butadiene–styrene blends". Polymer International. 56 (11): 1404–1414. doi:10.1002/pi.2290.
^Liao C, Kannan K (November 2011). "Widespread occurrence of bisphenol A in paper and paper products: implications for human exposure". Environmental Science & Technology. 45 (21): 9372–9379. Bibcode:2011EnST...45.9372L. doi:10.1021/es202507f. PMID21939283.
^Teeguarden JG, Hanson-Drury S (December 2013). "A systematic review of Bisphenol A "low dose" studies in the context of human exposure: A case for establishing standards for reporting "low-dose" effects of chemicals". Food and Chemical Toxicology. 62: 935–948. doi:10.1016/j.fct.2013.07.007. PMID23867546.
^European Food Safety Authority (2015). EFSA explains the Safety of Bisphenol A: scientific opinion on bisphenol A (2015). European Food Safety Authority. doi:10.2805/075460. ISBN9789291996421.
^"Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs". EFSA Journal. 13 (1): 3978. 21 January 2015. doi:10.2903/j.efsa.2015.3978. hdl:2164/12119.
^CLARITY-BPA Research Program (October 2021). NTP Research Report on the Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA): A Compendium of Published Findings. p. 18. doi:10.22427/NTP-RR-18. PMID34910417. S2CID240266384.
^"Bisphenol A (BPA)". Food Standards Australia New Zealand (FSANZ). Department of Health (Australia). Archived from the original on 24 March 2022. Retrieved 28 March 2022.
^Aschberger K, Castello P, Hoekstra E (2010). Bisphenol A and baby bottles : challenges and perspectives. The Publications Office of the European Union. doi:10.2788/97553. ISBN9789279158698.
^"EUR-Lex - 32011L0008 - EN - EUR-Lex". EUR-Lex. European Union. COMMISSION DIRECTIVE 2011/8/EU of 28 January 2011 amending Directive 2002/72/EC as regards the restriction of use of Bisphenol A in plastic infant feeding bottles
^ abcdMatsushima A, Kakuta Y, Teramoto T, et al. (October 2007). "Structural evidence for endocrine disruptor bisphenol A binding to human nuclear receptor ERR gamma". Journal of Biochemistry. 142 (4): 517–524. doi:10.1093/jb/mvm158. PMID17761695.
^Drewes JE, Hemming J, Ladenburger SJ, et al. (2005). "An assessment of endocrine disrupting activity changes during wastewater treatment through the use of bioassays and chemical measurements". Water Environment Research. 77 (1): 12–23. Bibcode:2005WaEnR..77...12D. doi:10.2175/106143005x41573. PMID15765931. S2CID12283834.
^Klecka GM, Staples CA, Clark KE, et al. (August 2009). "Exposure analysis of bisphenol A in surface water systems in North America and Europe". Environmental Science & Technology. 43 (16): 6145–50. Bibcode:2009EnST...43.6145K. doi:10.1021/es900598e. PMID19746705.
^Zhang C, Li Y, Wang C, et al. (2 January 2016). "Occurrence of endocrine disrupting compounds in aqueous environment and their bacterial degradation: A review". Critical Reviews in Environmental Science and Technology. 46 (1): 1–59. Bibcode:2016CREST..46....1Z. doi:10.1080/10643389.2015.1061881. S2CID94353391.
Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: John Vereker – berita · surat kabar · ...
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires (novembre 2016). Pour améliorer la vérifiabilité de l'article ainsi que son intérêt encyclopédique, il est nécessaire, quand des sources primaires sont citées, de les associer à des analyses faites par des sources secondaires. Espace Georges-BrassensBarque de Georges Brassens.Informations généralesFermeture dimanche en...
Congressional district of Manila Manila's 6th congressional districtConstituencyfor the House of Representatives of the PhilippinesBoundary of Manila's 6th congressional district in ManilaLocation of Manila within Metro ManilaCityManilaRegionMetro ManilaPopulation300,186 (2020)[1]Electorate170,533 (2022)[2]Major settlements 5 city districts north Paco Pandacan San Miguel Santa Ana Santa Mesa Area7.79 km2 (3.01 sq mi)Current constituencyCreated1987RepresentativeB...
Este artículo se refiere o está relacionado con un evento de salud pública reciente o actualmente en curso. La información de este artículo puede cambiar frecuentemente. Por favor, no agregues datos especulativos y recuerda colocar referencias a fuentes fiables para dar más detalles. Artículo principal: Pandemia de COVID-19 Pandemia de COVID-19 en Polonia Parte de la pandemia de COVID-19 Mapa de la voivodatos con casos confirmados de COVID-19 (al 17 de Noviembre de 2020): ...
Mi SonAgamaAfiliasi agamaHinduProvinsiQuảng NamLokasiNegaraVietnamKoordinat15°45′47.664″N 108°7′28.006″E / 15.76324000°N 108.12444611°E / 15.76324000; 108.12444611Koordinat: 15°45′47.664″N 108°7′28.006″E / 15.76324000°N 108.12444611°E / 15.76324000; 108.12444611ArsitekturJenisChampa Mi Son (pengucapan Vietnam: [mǐˀ səːn]) adalah sekumpulan reruntuhan candi Hindu yang dibangun pada kurun abad ke-4 hingga ke-14 M...
علم أعصاب الاختلافات الجنسية (بالإنجليزية: Neuroscience of sex differences) هو التخصص الذي يدرس خصائص الدماغ، والتي تُفَرّق بين دماغ الأنثى، ودماغ الذكر. ويعتقد البعض أن الاختلافات بين الجنسين ما هي إلا اختلافاتٍ نفسية، تعكس التفاعل بين الجينات، والهرمونات، وتعاليم المجتمع. وكل هذا ب...
History of the feminist movement in India Protest against 2012 Delhi gang rape and murder Part of a series onFeminism History Feminist history History of feminism Women's history American British Canadian German Waves First Second Third Fourth Timelines Women's suffrage Muslim countries US Other women's rights Women's suffrage by country Austria Australia Canada Colombia India Japan Kuwait Liechtenstein New Zealand Spain Second Republic Francoist Switzerland United Kingdom Cayman Islands Wale...
Gereja Santa TheresiaGereja Katolik Paroki Santa Theresia, MentengGereja Santa Theresia, Menteng, JakartaLokasiGondangdia, Menteng, Jakarta Pusat, JakartaNegara IndonesiaDenominasiGereja Katolik RomaArsitekturStatusGereja parokiStatus fungsionalAktifAdministrasiKeuskupan AgungKeuskupan Agung JakartaKlerusJumlah ImamRm . FX Dedomau D. da Gomez, SJ Gereja Santa Theresia atau yang lebih dikenal dengan nama Gereja Theresia adalah sebuah gereja paroki Katolik yang terletak di Jalan Gereja The...
Russian-Ukrainian television series The SnifferUkrainianНюхач GenreDetective fictionCreated byArtyom LitvinenkoWritten by Artyom Litvinenko Andriy Babik Directed byArtyom LitvinenkoStarring Kirill Käro Ivan Oganesyan Mariya Anikanova Nina Gogaeva Nikolai Chindyajkin Aleksey Zorin ComposerNikita MoisyeyevCountry of originUkraineOriginal languageRussianNo. of series4No. of episodes32ProductionExecutive producers Andriy Rizvanyuk (season 1) Maksym Asadchyy (season 2) ProducerVictor MirskyC...
I ministri delle finanze della Finlandia dal 1917 ad oggi sono i seguenti. Lista Ministro Partito Governo Inizio Fine Juhani Arajärvi Partito Finlandese Pehr Evind Svinhufvud,Juho Kusti Paasikivi 27 novembre 1917 27 novembre 1918 Kaarlo Castrén Partito Progressista Nazionale Lauri Ingman 27 novembre 1918 17 aprile 1919 August Ramsay Partito Popolare Svedese di Finlandia Kaarlo Castrén 17 aprile 1919 25 settembre 1919 Johannes Lundson Partito Popolare Svedese di Finlandia Juho Vennola(Gover...
2023–2025 meeting of U.S. legislature For a general discussion of the United States government's legislative branch, see United States Congress. 118th United States Congress117th ←→ 119thUnited States Capitol (2023)January 3, 2023 – January 3, 2025Members100 senators434 representatives6 non-voting delegatesSenate majorityDemocraticSenate PresidentKamala Harris (D)House majorityRepublicanHouse SpeakerKevin McCarthy(January 7 – October 3, 2023)[a]Patrick McHenry(pro ...
Public Business School located in Kolkata, West Bengal This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (July 2021) (Learn how and when to remove this template message) Indian Institute of Management CalcuttaMottoJñānam Sarvahitāya(Sanskrit)Motto in EnglishKnowledge for the benefit of allTypePublic Business SchoolEstablishedNovember 28, 1...
City in Arkansas, United StatesDiamond City, ArkansasCityLocation of Diamond City in Boone County, Arkansas.Coordinates: 36°27′27″N 92°54′47″W / 36.45750°N 92.91306°W / 36.45750; -92.91306[1]CountryUnited StatesStateArkansasCountyBooneGovernment • TypeCouncil government • MayorJaime NuessnerArea[2] • Total2.82 sq mi (7.30 km2) • Land2.82 sq mi (7.30 km2) •...
Software development methodology Planning and feedback loops in extreme programming Part of a series onSoftware development Core activities Data modeling Processes Requirements Design Construction Engineering Testing Debugging Deployment Maintenance Paradigms and models Agile Cleanroom Incremental Prototyping Spiral V model Waterfall Methodologies and frameworks ASD DevOps DAD DSDM FDD IID Kanban Lean SD LeSS MDD MSF PSP RAD RUP SAFe Scrum SEMAT TDD TSP OpenUP UP XP Supporting disciplines Con...
Chokak Hamam (Bath)Native name Çökək hamamLocationGanja, AzerbaijanCoordinates40°40′38″N 46°21′30″E / 40.6773°N 46.3582°E / 40.6773; 46.3582Built1606Original useBathRestored2003ArchitectSheikh Bahaddin Mahammad AmilGoverning bodyVego Hotel, GanjaOwnerVego Hotel, GanjaLocation of Chokak Hamam (Bath) in Azerbaijan Chokak Hamam (Azerbaijani: Çökək hamam, fallen bath) is a historical bath near Juma Mosque in Ganja.[1] About Chokak Hamam was ...
2016 Filipino filmBirdshotTheatrical poster for the Philippine releaseDirected byMikhail RedWritten by Mikhail Red Rae Red Produced byPamela L. ReyesStarring Mary Joy Apostol Arnold Reyes Ku Aquino John Arcilla CinematographyMycko DavidEdited by Jay Halili Mikhail Red Music byTeresa BarrozoProductioncompanies PelikulaRED Globe Studios Distributed by Tuko Film Productions Buchi Boy Films CJ Entertainment Netflix Release dates October 28, 2016 (2016-10-28) (TIFF) August ...
2005 video gameHarvest Moon DSDeveloper(s)Marvelous InteractivePublisher(s)JP: Marvelous InteractiveNA: Natsume Inc.EU: Rising Star GamesProducer(s)Yoshifumi HashimotoSeriesStory of SeasonsPlatform(s)Nintendo DSRelease March 17, 2005 Harvest Moon DSJP: March 17, 2005NA: September 12, 2006EU: April 13, 2007AU: June 7, 2007Harvest Moon DS CuteJP: December 8, 2005NA: March 25, 2008 Genre(s)Simulation, role-playingMode(s)Single-player Harvest Moon DS, known in Japan as Bokujō Monogatari: Coloboc...