Pentellated 7-orthoplexes
Orthogonal projections in B6 Coxeter plane
7-orthoplex
Pentellated 7-orthoplex
Pentitruncated 7-orthoplex
Penticantellated 7-orthoplex
Penticantitruncated 7-orthoplex
Pentiruncinated 7-orthoplex
Pentiruncitruncated 7-orthoplex
Pentiruncicantellated 7-orthoplex
Pentiruncicantitruncated 7-orthoplex
Pentistericated 7-orthoplex
Pentisteritruncated 7-orthoplex
Pentistericantellated 7-orthoplex
Pentistericantitruncated 7-orthoplex
Pentisteriruncinated 7-orthoplex
Pentisteriruncitruncated 7-orthoplex
Pentisteriruncicantellated 7-orthoplex
Pentisteriruncicantitruncated 7-orthoplex
In seven-dimensional geometry , a pentellated 7-orthoplex is a convex uniform 7-polytope with 5th order truncations (pentellation ) of the regular 7-orthoplex .
There are 32 unique pentellations of the 7-orthoplex with permutations of truncations, cantellations, runcinations, and sterications. 16 are more simply constructed relative to the 7-cube .
These polytopes are a part of a set of 127 uniform 7-polytopes with B7 symmetry.
Pentellated 7-orthoplex
Alternate names
Small terated hecatonicosoctaexon (acronym: Staz) (Jonathan Bowers)[ 1]
Coordinates
Coordinates are permutations of (0,1,1,1,1,1,2)√2
Images
Pentitruncated 7-orthoplex
Alternate names
Teritruncated hecatonicosoctaexon (acronym: Tetaz) (Jonathan Bowers)[ 2]
Images
Coordinates
Coordinates are permutations of (0,1,1,1,1,2,3).
Penticantellated 7-orthoplex
Alternate names
Terirhombated hecatonicosoctaexon (acronym: Teroz) (Jonathan Bowers)[ 3]
Coordinates
Coordinates are permutations of (0,1,1,1,2,2,3)√2 .
Images
Penticantitruncated 7-orthoplex
Alternate names
Terigreatorhombated hecatonicosoctaexon (acronym: Tograz) (Jonathan Bowers)[ 4]
Coordinates
Coordinates are permutations of (0,1,1,1,2,3,4)√2 .
Pentiruncinated 7-orthoplex
Alternate names
Teriprismated hecatonicosoctaexon (acronym: Topaz) (Jonathan Bowers)[ 5]
Coordinates
The coordinates are permutations of (0,1,1,2,2,2,3)√2 .
Images
Pentiruncitruncated 7-orthoplex
Alternate names
Teriprismatotruncated hecatonicosoctaexon (acronym: Toptaz) (Jonathan Bowers)[ 6]
Coordinates
Coordinates are permutations of (0,1,1,2,2,3,4)√2 .
Images
Pentiruncicantellated 7-orthoplex
Alternate names
Teriprismatorhombated hecatonicosoctaexon (acronym: Toparz) (Jonathan Bowers)[ 7]
Coordinates
Coordinates are permutations of (0,1,1,2,3,3,4)√2 .
Images
Pentiruncicantitruncated 7-orthoplex
Alternate names
Terigreatoprismated hecatonicosoctaexon (acronym: Tegopaz) (Jonathan Bowers)[ 8]
Coordinates
Coordinates are permutations of (0,1,1,2,3,4,5)√2 .
Images
Pentistericated 7-orthoplex
Alternate names
Tericellated hecatonicosoctaexon (acronym: Tocaz) (Jonathan Bowers)[ 9]
Images
Coordinates
Coordinates are permutations of (0,1,2,2,2,2,3)√2 .
Pentisteritruncated 7-orthoplex
Alternate names
Tericellitruncated hecatonicosoctaexon (acronym: Tacotaz) (Jonathan Bowers)[ 10]
Coordinates
Coordinates are permutations of (0,1,2,2,2,3,4)√2 .
Images
Pentistericantellated 7-orthoplex
Alternate names
Tericellirhombated hecatonicosoctaexon (acronym: Tocarz) (Jonathan Bowers)[ 11]
Coordinates
Coordinates are permutations of (0,1,2,2,3,3,4)√2 .
Images
Pentistericantitruncated 7-orthoplex
Alternate names
Tericelligreatorhombated hecatonicosoctaexon (acronym: Tecagraz) (Jonathan Bowers)[ 12]
Coordinates
Coordinates are permutations of (0,1,2,2,3,4,5)√2 .
Images
Pentisteriruncinated 7-orthoplex
Alternate names
Bipenticantitruncated 7-orthoplex as t1,2,3,6 {35 ,4}
Tericelliprismated hecatonicosoctaexon (acronym: Tecpaz) (Jonathan Bowers)[ 13]
Coordinates
Coordinates are permutations of (0,1,2,3,3,3,4)√2 .
Images
Pentisteriruncitruncated 7-orthoplex
Alternate names
Tericelliprismatotruncated hecatonicosoctaexon (acronym: Tecpotaz) (Jonathan Bowers)[ 14]
Coordinates
Coordinates are permutations of (0,1,2,3,3,4,5)√2 .
Images
Pentisteriruncicantellated 7-orthoplex
Alternate names
Bipentiruncicantitruncated 7-orthoplex as t1,2,3,4,6 {35 ,4}
Tericelliprismatorhombated hecatonicosoctaexon (acronym: Tacparez) (Jonathan Bowers)[ 15]
Coordinates
Coordinates are permutations of (0,1,2,3,4,4,5)√2 .
Images
Pentisteriruncicantitruncated 7-orthoplex
Alternate names
Great terated hecatonicosoctaexon (acronym: Gotaz) (Jonathan Bowers)[ 16]
Coordinates
Coordinates are permutations of (0,1,2,3,4,5,6)√2 .
Images
Notes
^ Klitzing, (x3o3o3o3o3x4o - )
^ Klitzing, (x3x3o3o3o3x4o - )
^ Klitzing, (x3o3x3o3o3x4o - )
^ Klitzing, (x3x3x3oxo3x4o - )
^ Klitzing, (x3o3o3x3o3x4o - )
^ Klitzing, (x3x3o3x3o3x4o - )
^ Klitzing, (x3o3x3x3o3x4o - )
^ Klitzing, (x3x3x3x3o3x4o - )
^ Klitzing, (x3o3o3o3x3x4o - )
^ Klitzing, (x3x3o3o3x3x4o - )
^ Klitzing, (x3o3x3o3x3x4o - )
^ Klitzing, (x3x3x3o3x3x4o - )
^ Klitzing, (x3o3o3x3x3x4o - )
^ Klitzing, (x3x3o3x3x3x4o - )
^ Klitzing, (x3o3x3x3x3x4o - )
^ Klitzing, (x3x3x3x3x3x4o - )
References
H.S.M. Coxeter :
H.S.M. Coxeter, Regular Polytopes , 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter , edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I , [Math. Zeit. 46 (1940) 380-407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II , [Math. Zeit. 188 (1985) 559-591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III , [Math. Zeit. 200 (1988) 3-45]
Norman Johnson Uniform Polytopes , Manuscript (1991)
N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs , Ph.D.
Klitzing, Richard. "7D uniform polytopes (polyexa)" .
External links