The reaction requires metal catalysts. Most commercially important processes employ heterogeneous catalysts. The heterogeneous catalysts are often prepared by in-situ activation of a metal halide (MClx) using organoaluminium or organotin compounds, e.g. combining MClx–EtAlCl2. A typical catalyst support is alumina. Commercial catalysts are often based on molybdenum and ruthenium. Well-defined organometallic compounds have mainly been investigated for small-scale reactions or in academic research. The homogeneous catalysts are often classified as Schrock catalysts and Grubbs catalysts. Schrock catalysts feature molybdenum(VI)- and tungsten(VI)-based centers supported by alkoxide and imido ligands.[4]
Grubbs catalysts, on the other hand, are ruthenium(II) carbenoid complexes.[5] Many variations of Grubbs catalysts are known. Some have been modified with a chelating isopropoxybenzylidene ligand to form the related Hoveyda–Grubbs catalyst.
Applications
Olefin metathesis has several industrial applications. Almost all commercial applications employ heterogeneous catalysts using catalysts developed well before the Nobel-Prize winning work on homogeneous complexes.[6] Representative processes include:[1]
The Phillips Triolefin and the Olefin conversion technology. This process interconverts propylene with ethylene and 2-butenes. Rhenium and molybdenum catalysts are used. Nowadays, only the reverse reaction, i.e., the conversion of ethylene and 2-butene to propylene is industrially practiced, however.[6]
Molecular catalysts have been explored for the preparation of a variety of potential applications.[9] the manufacturing of high-strength materials, the preparation of cancer-targeting nanoparticles,[10] and the conversion of renewable plant-based feedstocks into hair and skin care products.[11]
Hérisson and Chauvin first proposed the widely accepted mechanism of transition metal alkene metathesis.[12] The direct [2+2] cycloaddition of two alkenes is formally symmetry forbidden and thus has a high activation energy. The Chauvin mechanism involves the [2+2] cycloaddition of an alkene double bond to a transition metal alkylidene to form a metallacyclobutane intermediate. The metallacyclobutane produced can then cycloeliminate to give either the original species or a new alkene and alkylidene. Interaction with the d-orbitals on the metal catalyst lowers the activation energy enough that the reaction can proceed rapidly at modest temperatures.
Olefin metathesis involves little change in enthalpy for unstrained alkenes. Product distributions are determined instead by le Chatelier's Principle, i.e. entropy.
Cross metathesis and ring-closing metathesis are driven by the entropically favored evolution of ethylene or propylene, which can be removed from the system because they are gases. Because of this CM and RCM reactions often use alpha-olefins. The reverse reaction of CM of two alpha-olefins, ethenolysis, can be favored but requires high pressures of ethylene to increase ethylene concentration in solution. The reverse reaction of RCM, ring-opening metathesis, can likewise be favored by a large excess of an alpha-olefin, often styrene. Ring-opening metathesis usually involves a strained alkene (often a norbornene) and the release of ring strain drives the reaction. Ring-closing metathesis, conversely, usually involves the formation of a five- or six-membered ring, which is enthalpically favorable; although these reactions tend to also evolve ethylene, as previously discussed. RCM has been used to close larger macrocycles, in which case the reaction may be kinetically controlled by running the reaction at high dilutions.[13] The same substrates that undergo RCM can undergo acyclic diene metathesis, with ADMET favored at high concentrations. The Thorpe–Ingold effect may also be exploited to improve both reaction rates and product selectivity.
Cross-metathesis is synthetically equivalent to (and has replaced) a procedure of ozonolysis of an alkene to two ketone fragments followed by the reaction of one of them with a Wittig reagent.
Historical overview
"Olefin metathesis is a child of industry and, as with many catalytic processes, it was discovered by accident."[1]
As part of ongoing work in what would later become known as Ziegler–Natta catalysis Karl Ziegler discovered the conversion of ethylene into 1-butene instead of a saturated long-chain hydrocarbon (see nickel effect).[14]
a reaction then classified as a so-called coordination polymerization. According to the then proposed reaction mechanism a RTiX titanium intermediate first coordinates to the double bond in a pi complex. The second step then is a concertedSNi reaction breaking a CC bond and forming a new alkylidene-titanium bond; the process then repeats itself with a second monomer:
This particular mechanism is symmetry forbidden based on the Woodward–Hoffmann rules first formulated two years earlier. Cyclobutanes have also never been identified in metathesis reactions, which is another reason why it was quickly abandoned.
In this reaction 2-pentene forms a rapid (a matter of seconds) chemical equilibrium with 2-butene and 3-hexene. No double bond migrations are observed; the reaction can be started with the butene and hexene as well and the reaction can be stopped by addition of methanol.
The Goodyear group demonstrated that the reaction of regular 2-butene with its all-deuteratedisotopologue yielded C4H4D4 with deuterium evenly distributed.[20] In this way they were able to differentiate between a transalkylidenation mechanism and a transalkylation mechanism (ruled out):
In 1971 Chauvin proposed a four-membered metallacycle intermediate to explain the statistical distribution of products found in certain metathesis reactions.[21] This mechanism is today considered the actual mechanism taking place in olefin metathesis.
The three principal products C9, C10 and C11 are found in a 1:2:1 regardless of conversion. The same ratio is found with the higher oligomers. Chauvin also explained how the carbene forms in the first place: by alpha-hydride elimination from a carbon metal single bond. For example, propylene (C3) forms in a reaction of 2-butene (C4) with tungsten hexachloride and tetramethyltin (C1).
In the same year Pettit who synthesised cyclobutadiene a few years earlier independently came up with a competing mechanism.[22] It consisted of a tetramethylene intermediate with sp3hybridized carbon atoms linked to a central metal atom with multiple three-center two-electron bonds.
Experimental support offered by Pettit for this mechanism was based on an observed reaction inhibition by carbon monoxide in certain metathesis reactions of 4-nonene with a tungsten metal carbonyl[23]
Robert H. Grubbs got involved in metathesis in 1972 and also proposed a metallacycle intermediate but one with four carbon atoms in the ring.[24] The group he worked in reacted 1,4-dilithiobutane with tungsten hexachloride in an attempt to directly produce a cyclomethylenemetallacycle producing an intermediate, which yielded products identical with those produced by the intermediate in the olefin metathesis reaction. This mechanism is pairwise:
In 1973 Grubbs found further evidence for this mechanism by isolating one such metallacycle not with tungsten but with platinum by reaction of the dilithiobutane with cis-bis(triphenylphosphine)dichloroplatinum(II)[25]
In 1975 Katz also arrived at a metallacyclobutane intermediate consistent with the one proposed by Chauvin[26] He reacted a mixture of cyclooctene, 2-butene and 4-octene with a molybdenum catalyst and observed that the unsymmetrical C14 hydrocarbon reaction product is present right from the start at low conversion.
In any of the pairwise mechanisms with olefin pairing as rate-determining step this compound, a secondary reaction product of C12 with C6, would form well after formation of the two primary reaction products C12 and C16.
In 1974 Casey was the first to implement carbenes into the metathesis reaction mechanism:[27]
Grubbs in 1976 provided evidence against his own updated pairwise mechanism:
with a 5-membered cycle in another round of isotope labeling studies in favor of the 4-membered cycle Chauvin mechanism:[28][29]
In this reaction the ethylene product distribution at low conversion was found to be consistent with the carbene mechanism. On the other hand, Grubbs did not rule out the possibility of a tetramethylene intermediate.
The first practical metathesis system was introduced in 1978 by Tebbe based on the (what later became known as the) Tebbe reagent.[30] In a model reaction isotopically labeled carbon atoms in isobutene and methylenecyclohexane switched places:
The Grubbs group then isolated the proposed metallacyclobutane intermediate in 1980 also with this reagent together with 3-methyl-1-butene:[31]
In that same year the Grubbs group proved that metathesis polymerization of norbornene by Tebbe's reagent is a living polymerization system[33] and a year later Grubbs and Schrock co-published an article describing living polymerization with a tungsten carbene complex[34] While Schrock focussed his research on tungsten and molybdenum catalysts for olefin metathesis, Grubbs started the development of catalysts based on ruthenium, which proved to be less sensitive to oxygen and water and therefore more functional group tolerant.
Grubbs catalysts
In the 1960s and 1970s various groups reported the ring-opening polymerization of norbornene catalyzed by hydrated trichlorides of ruthenium and other late transition metals in polar, protic solvents.[35][36][37] This prompted Robert H. Grubbs and coworkers to search for well-defined, functional group tolerant catalysts based on ruthenium. The Grubbs group successfully polymerized the 7-oxo norbornene derivative using ruthenium trichloride, osmium trichloride as well as tungsten alkylidenes.[38] They identified a Ru(II) carbene as an effective metal center and in 1992 published the first well-defined, ruthenium-based olefin metathesis catalyst, (PPh3)2Cl2Ru=CHCH=CPh2:[39]
The corresponding tricyclohexylphosphine complex (PCy3)2Cl2Ru=CHCH=CPh2 was also shown to be active.[40] This work culminated in the now commercially available 1st generation Grubbs catalyst.[41][42]
Schrock catalysts
Schrock entered the olefin metathesis field in 1979 as an extension of work on tantalum alkylidenes.[43] The initial result was disappointing as reaction of CpTa(=CH−t−Bu)Cl2 with ethylene yielded only a metallacyclopentane, not metathesis products:[44]
But by tweaking this structure to a PR3Ta(CHt−bu)(Ot−bu)2Cl (replacing chloride by t-butoxide and a cyclopentadienyl by an organophosphine, metathesis was established with cis-2-pentene.[45] In another development, certain tungsten oxo complexes of the type W(O)(CHt−Bu)(Cl)2(PEt)3 were also found to be effective.[46]
Schrock alkylidenes for olefin metathesis of the type Mo(NAr)(CHC(CH3)2R){OC(CH3)(CF3)2}2 were commercialized starting in 1990.[47][48]
The first asymmetric catalyst followed in 1993[49]
With a Schrock catalyst modified with a BINOL ligand in a norbornadieneROMP leading to highly stereoregular cis, isotactic polymer.
^Astruc D. (2005). "The metathesis reactions: from a historical perspective to recent developments". New Journal of Chemistry. 29 (1): 42–56. doi:10.1039/b412198h. S2CID98046245.
^ abGhashghaee, Mohammad (2018). "Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins". Reviews in Chemical Engineering. 34 (5): 595–655. doi:10.1515/revce-2017-0003. S2CID103664623.
^McCauley JA, McIntyre CJ, Rudd MT, Nguyen KT, Romano JJ, Butcher JW, Gilbert KF, Bush KJ, Holloway MK, Swestock J, Wan BL, Carroll SS, DiMuzio JM, Graham DJ, Ludmerer SW, Mao SS, Stahlhut MW, Fandozzi CM, Trainor N, Olsen DB, Vacca JP, Liverton NJ (March 2010). "Discovery of vaniprevir (MK-7009), a macrocyclic hepatitis C virus NS3/4a protease inhibitor". Journal of Medicinal Chemistry. 53 (6): 2443–63. doi:10.1021/jm9015526. PMID20163176.
^Kotha, S; Waghule GT (June 2012). "Diversity Oriented Approach to Crownophanes by Enyne Metathesis and Diels–Alder Reaction as Key Steps". The Journal of Organic Chemistry. 77 (14): 6314–6318. doi:10.1021/jo300766f. PMID22731677.
^Jean-Louis Hérisson, Par; Chauvin, Yves (1971). "Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques". Die Makromolekulare Chemie (in French). 141 (1): 161–176. doi:10.1002/macp.1971.021410112.
^Sambasivarao Kotha; Kuldeep Singh (2007). "Cross-enyne and ring-closing metathesis cascade: A building-block approach suitable for diversity-oriented synthesis of densely functionalized macroheterocycles with amino acid scaffolds". European Journal of Organic Chemistry. 2007 (35): 5909–5916. doi:10.1002/ejoc.200700744.
^Truett, W. L.; Johnson, D. R.; Robinson, I. M.; Montague, B. A. (1960). "Polynorbornene by Coördination Polymerization". Journal of the American Chemical Society. 82 (9): 2337–2340. doi:10.1021/ja01494a057.
^Natta, G.; Dall'asta, G.; Mazzanti, G. (1964). "Stereospecific Homopolymerization of Cyclopentene". Angewandte Chemie International Edition in English. 3 (11): 723–729. doi:10.1002/anie.196407231.
^Banks, R. L.; Bailey, G. C. (1964). "Olefin Disproportionation. A New Catalytic Process". Industrial & Engineering Chemistry Product Research and Development. 3 (3): 170–173. doi:10.1021/i360011a002.
^Calderon, N; Chen, Hung Yu; Scott, Kenneth W. (1967). "Olefin metathesis – A novel reaction for skeletal transformations of unsaturated hydrocarbons". Tetrahedron Letters. 8 (34): 3327–3329. doi:10.1016/S0040-4039(01)89881-6.
^Calderon, Nissim.; Ofstead, Eilert A.; Ward, John P.; Judy, W. Allen.; Scott, Kenneth W. (1968). "Olefin metathesis. I. Acyclic vinylenic hydrocarbons". Journal of the American Chemical Society. 90 (15): 4133–4140. doi:10.1021/ja01017a039.
^Jean-Louis Hérisson, Par; Chauvin, Yves (1971). "Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques". Die Makromolekulare Chemie. 141 (1): 161–176. doi:10.1002/macp.1971.021410112.
^S. Lewandos, G; Pettit, R. (1971). "A proposed mechanism for the metal-catalysed disproportionation reaction of olefins". Tetrahedron Letters. 12 (11): 789–793. doi:10.1016/S0040-4039(01)96558-X.
^Lewandos, Glenn S.; Pettit, R. (1971). "Mechanism of the metal-catalyzed disproportionation of olefins". Journal of the American Chemical Society. 93 (25): 7087–7088. doi:10.1021/ja00754a067.
^Grubbs, Robert H.; Brunck, Terence K. (1972). "Possible intermediate in the tungsten-catalyzed olefin metathesis reaction". Journal of the American Chemical Society. 94 (7): 2538–2540. doi:10.1021/ja00762a073.
^Biefeld, Carol G.; Eick, Harry A.; Grubbs, Robert H. (1973). "Crystal structure of bis(triphenylphosphine)tetramethyleneplatinum(II)". Inorganic Chemistry. 12 (9): 2166–2170. doi:10.1021/ic50127a046.
^Katz, Thomas J.; McGinnis, James (1975). "Mechanism of the olefin metathesis reaction". Journal of the American Chemical Society. 97 (6): 1592–1594. doi:10.1021/ja00839a063.
^Casey, Charles P.; Burkhardt, Terry J. (1974). "Reactions of (diphenylcarbene)pentacarbonyltungsten(0) with alkenes. Role of metal-carbene complexes in cyclopropanation and olefin metathesis reactions". Journal of the American Chemical Society. 96 (25): 7808–7809. doi:10.1021/ja00832a032.
^Grubbs, Robert H.; Burk, Patrick L.; Carr, Dale D. (1975). "Mechanism of the olefin metathesis reaction". Journal of the American Chemical Society. 97 (11): 3265–3267. doi:10.1021/ja00844a082.
^Grubbs, Robert H.; Carr, D. D.; Hoppin, C.; Burk, P. L. (1976). "Consideration of the mechanism of the metal catalyzed olefin metathesis reaction". Journal of the American Chemical Society. 98 (12): 3478–3483. doi:10.1021/ja00428a015.
^Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. (1978). "Olefin homologation with titanium methylene compounds". Journal of the American Chemical Society. 100 (11): 3611–3613. doi:10.1021/ja00479a061.
^Howard, T. R.; Lee, J. B.; Grubbs, R. H. (1980). "Titanium metallacarbene-metallacyclobutane reactions: stepwise metathesis". Journal of the American Chemical Society. 102 (22): 6876–6878. doi:10.1021/ja00542a050.
^Stille, John R.; Grubbs, Robert H. (1986). "Synthesis of (.+-.)-.DELTA.9,12-capnellene using titanium reagents". Journal of the American Chemical Society. 108 (4): 855–856. doi:10.1021/ja00264a058.
^Gilliom, Laura R.; Grubbs, Robert H. (1986). "Titanacyclobutanes derived from strained, cyclic olefins: the living polymerization of norbornene". Journal of the American Chemical Society. 108 (4): 733–742. doi:10.1021/ja00264a027.
^Schrock, R. R.; Feldman, J.; Cannizzo, L. F.; Grubbs, R. H. (1987). "Ring-opening polymerization of norbornene by a living tungsten alkylidene complex". Macromolecules. 20 (5): 1169–1172. Bibcode:1987MaMol..20.1169S. doi:10.1021/ma00171a053.
^Michelotti, Francis W.; Keaveney, William P. (1965). "Coordinated Polymerization of the Bicyclo-(2.2.1)-heptene-2 Ring System (Norbornene) in Polar Media". Journal of Polymer Science Part A: General Papers. 3 (3): 895–905. doi:10.1002/pol.1965.100030305.
^Rinehart, Robert E.; Smith, Homer P. (1965). "The Emulsion Polymerization of the Norbornene Ring System Catalyzed by Noble Metal Compounds". Journal of Polymer Science Part B: Polymer Letters. 3 (12): 1049–1052. Bibcode:1965JPoSL...3.1049R. doi:10.1002/pol.1965.110031215.
^Porri, Lido; Rossi, Renzo; Diversi, Pietro; Lucherini, Antonio (1974). "Ring-Opening Polymerization of Cycloolefins with Catalysts Derived from Ruthenium and Iridium". Die Makromolekulare Chemie. 175 (11): 3097–3115. doi:10.1002/macp.1974.021751106.
^Novak, Bruce M.; Grubbs, Robert H. (1988). "The ring opening metathesis polymerization of 7-oxabicyclo[2.2.1]hept-5-ene derivatives: a new acyclic polymeric ionophore". Journal of the American Chemical Society. 110 (3): 960–961. doi:10.1021/ja00211a043.
^Nguyen, Sonbinh T.; Grubbs, Robert H.; Ziller, Joseph W. (1993). "Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysts". Journal of the American Chemical Society. 115 (21): 9858–9859. doi:10.1021/ja00074a086.
^Schwab, Peter; France, Marcia B.; Ziller, Joseph W.; Grubbs, Robert H. (1995). "A Series of Well-Defined Metathesis Catalysts–Synthesis of [RuCl2(CHR′)(PR3)2] and Its Reactions". Angewandte Chemie International Edition in English. 34 (18): 2039–2041. doi:10.1002/anie.199520391.
^Schwab, Peter; Grubbs, Robert H.; Ziller, Joseph W. (1996). "Synthesis and Applications of RuCl2(=CHR')(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity". Journal of the American Chemical Society. 118: 100–110. doi:10.1021/ja952676d.
^Schrock, R. R.; Meakin, P. (1974). "Pentamethyl complexes of niobium and tantalum". Journal of the American Chemical Society. 96 (16): 5288–5290. doi:10.1021/ja00823a064.
^McLain, S. J.; Wood, C. D.; Schrock, R. R. (1979). "Preparation and characterization of tantalum(III) olefin complexes and tantalum(V) metallacyclopentane complexes made from acyclic α olefins". Journal of the American Chemical Society. 101 (16): 4558–4570. doi:10.1021/ja00510a022.
^Schrock, R; Rocklage, Scott; Wengrovius, Jeffrey; Rupprecht, Gregory; Fellmann, Jere (1980). "Preparation and characterization of active niobium, tantalum and tungsten metathesis catalysts". Journal of Molecular Catalysis. 8 (1–3): 73–83. doi:10.1016/0304-5102(80)87006-4.
^Wengrovius, Jeffrey H.; Schrock, Richard R.; Churchill, Melvyn Rowen; Missert, Joseph R.; Youngs, Wiley J. (1980). "Multiple metal-carbon bonds. 16. Tungsten-oxo alkylidene complexes as olefins metathesis catalysts and the crystal structure of W(O)(CHCMe3(PEt3)Cl2". Journal of the American Chemical Society. 102 (13): 4515–4CF6. doi:10.1021/ja00533a035.
^Schrock, Richard R.; Murdzek, John S.; Bazan, Gui C.; Robbins, Jennifer; Dimare, Marcello; O'Regan, Marie (1990). "Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins". Journal of the American Chemical Society. 112 (10): 3875–3886. doi:10.1021/ja00166a023.
^Bazan, Guillermo C.; Oskam, John H.; Cho, Hyun Nam; Park, Lee Y.; Schrock, Richard R. (1991). "Living Ring-Opening Metathesis Polymerization of 2,3-Difunctionalized 7-Oxanorbornenes and 7-Oxanorbornadienes by Mo(CHCMe2R)(N-2,6-C6H3-i-Pr2)(O-t-Bu)2 and Mo(CHCMe2R)(N-2,6-C6H3-i-Pr2)(OCMe2CF3)2". 113 (18): 6899–6907. doi:10.1021/ja00018a028. {{cite journal}}: Cite journal requires |journal= (help)
^McConville, David H.; Wolf, Jennifer R.; Schrock, Richard R. (1993). "Synthesis of chiral molybdenum ROMP initiators and all-cis highly tactic poly(2,3-(R)2norbornadiene) (R = CF3 or CO2Me)". Journal of the American Chemical Society. 115 (10): 4413–4414. doi:10.1021/ja00063a090.
Schrock, R. R. (1990). "Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes". Accounts of Chemical Research. 23 (5): 158–165. doi:10.1021/ar00173a007.
Grubbs, R. H.; Chang, S. (1998). "Recent advances in olefin metathesis and its application in organic synthesis". Tetrahedron. 54 (18): 4413–4450. doi:10.1016/S0040-4020(97)10427-6.
Esta é uma lista de cidades da região do Alentejo, ordenadas alfabeticamente, por população, que foram registados nos censos de 2021, pela área e pela densidade populacional. A região do Alentejo registou, através dos censos de 2021, uma população de 704.934 habitantes[1]. Todas as 21 cidades do Alentejo registam uma população de 284.128, tendo cerca de 40% de todos os habitantes da região morando nas cidades. Lista das 21 cidades do Alentejo Cidade Sub-região Habitantes (2021) ...
Dewan Perwakilan RakyatKota Lhokseumawe DPRK Lhokseumawe2019-2024JenisJenisUnikameral Jangka waktu5 tahunSejarahDidirikan2003Sesi baru dimulai10 September 2019PimpinanKetuaIsmail A. Manaf (PA) sejak 10 Oktober 2019 Wakil Ketua IIrwan Yusuf (Gerindra) sejak 10 Oktober 2019 Wakil Ketua IITeuku Sofianus (Demokrat) sejak 10 Oktober 2019 KomposisiAnggota25Partai & kursi NasDem (2) PKB (1) Demokrat (3) PAN (2) Golkar (2) ...
1985 studio album by StarshipKnee Deep in the HooplaStudio album by StarshipReleasedSeptember 10, 1985Recorded1984−1985Studio Record Plant, Sausalito Music Grinder, Los Angeles GenreAOR, pop rockLength40:28LabelGrunt/RCAProducer Peter Wolf Jeremy Smith Dennis Lambert (executive producer) Starship chronology Knee Deep in the Hoopla(1985) No Protection(1987) Singles from Knee Deep in the Hoopla We Built This CityReleased: August 1985 (US)[1] SaraReleased: December 1985 Tomorro...
Artikel ini bukan mengenai Fantastic Stories. FantasticSampul keluaran Oktober 1961, karya Alex SchomburgEditorHoward BrowneKategoriFiksi fantasi, science fictionFormatUkuran digestPenerbitZiff DavisDidirikan1952Terbitan terakhir1980NegaraAmerika SerikatBahasaInggris Fantastic adalah sebuah majalah fiksi ilmiah dan fantasi ukuran digest Amerika, yang terbit dari 1952 sampai 1980. Majalah tersebut didirikan oleh Ziff Davis sebagai penyertaan fantasi dari Amazing Stories. Referensi Ashley, Mike...
49°28′00″N 19°46′00″W / 49.4667°N 19.7667°W / 49.4667; -19.7667 آر إم إس كارباثيا الخدمة سميت باسم كاربات المالك كونارد لاين المشغل وايت ستار لاين الطول 164.58 متر تعديل مصدري - تعديل آر إم إس كارباثيا (بالإنجليزية: RMS Carpathia) كانت سفينة بخارية ناقلة للركاب عابرة لل...
Historic church in Arkansas, United States United States historic placePhiladelphia Methodist ChurchU.S. National Register of Historic Places Location in ArkansasShow map of ArkansasLocation in United StatesShow map of the United StatesNearest cityMelbourne, ArkansasCoordinates36°6′39″N 91°52′0″W / 36.11083°N 91.86667°W / 36.11083; -91.86667Arealess than one acreBuilt1858ArchitectWicks, Samuel L.NRHP reference No.76000420[1]Added to NRHPSe...
Fictional city in the DC Universe, best known as the home of Batman For other uses, see Gotham City (disambiguation). Gotham CityBatman locationShot of Gotham City in Batman (vol. 3) #14(March 2017) by Mitch GeradsFirst appearanceBatman #4(December 1940)Created byBill Finger (writer)Bob Kane (artist)GenreSuperheroIn-universe informationTypeCityLocationsAce ChemicalsArkham AsylumBatcaveBlackgate PenitentiaryGotham City Police DepartmentIceberg LoungeWayne EnterprisesWayne ManorCharacters List ...
Device that generates sparks in internal combustion engines For other uses, see Spark plug (disambiguation). Several sizes of spark plug (electrodes at the bottom)Spark plug operation (the red/yellow star near the end of phase 2) in a four-stroke engine A spark plug is an electrical device used in an internal combustion engine to produce a spark which ignites the air-fuel mixture in the combustion chamber. As part of the engine's ignition system, the spark plug receives high-voltage electrici...
2013 debut studio album by Gabrielle Aplin Some of this article's listed sources may not be reliable. Please help this article by looking for better, more reliable sources. Unreliable citations may be challenged or deleted. (August 2018) (Learn how and when to remove this template message) English RainStudio album by Gabrielle AplinReleased13 May 2013Recorded2012–13GenreFolk popLength49:45LabelParlophoneProducerMike SpencerGabrielle Aplin chronology Gabrielle Aplin: Live at Koko(2013) E...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) جون جاي بولاند معلومات شخصية تاريخ الميلاد سنة 1875 تاريخ الوفاة سنة 1956 (80–81 سنة) مواطنة الولايات المتحدة الحياة العملية المهنة رائد أعمال تعد...
Constituency of Kuala Lumpur, Malaysia Titiwangsa (P119) the Federal Territories of Malaysia constituencyFederal constituencyLegislatureDewan RakyatMPJohari Abdul GhaniBNConstituency created1984First contested1986Last contested2022DemographicsPopulation (2020)[1]122,096Electors (2022)[2]80,747Area (km²)[3]15Pop. density (per km²)8,139.7 Titiwangsa is a federal constituency in the Federal Territories, Malaysia, that has been represented in the Dewan Rakyat since 1986....
Celebration For Mardi Gras dates through 2050, see Shrove Tuesday § Dates. Main articles: Carnival and Mardi Gras Mardi Gras in the United States is not observed nationally across the country, largely due to the country's Protestant and Anglo-Saxon roots. Mardi Gras and Carnival are mostly Catholic holidays, while the United States has a Protestant-majority population (the season is known as Fastelavn in the Evangelical Lutheran tradition and Shrovetide in the Anglican & Methodist d...
Burj Khalifa, in Dubai, is currently the world's tallest building. Map all coordinates using: OpenStreetMap Download coordinates as: KML GPX (all coordinates) GPX (primary coordinates) GPX (secondary coordinates) The world's tallest human-made structure is the 828-metre-tall (2,717 ft) Burj Khalifa in Dubai, United Arab Emirates. The building gained the official title of tallest building in the world and the tallest self-supported structure at its opening on January 9, 2010. The second-t...
Dieser Artikel behandelt japanischen Konzern. Zu weiteren Bedeutungen siehe Honda (Begriffsklärung). Honda Motor Co., Ltd.本田技研工業株式会社 Logo Rechtsform Kabushiki-gaisha (Aktiengesellschaft) ISIN JP3854600008 Gründung 24. September 1948 Sitz Tokio, Japan Japan Leitung Takahiro Hachigo (Präsident und CEO)[1] Mitarbeiterzahl 218.674 (2020)[2] Umsatz 15.88 Bio. Yen (95,4 Mrd. EUR) (2019)[3] Branche Kfz- und Motorenhersteller Website global.honda L...
Anak babi Anak babi merujuk pada anak babi yang masih dalam masa menyusui dan diberi makan dengan susu ibunya. Dalam aspek kuliner, babi muda umumnya dikonsumsi ketika usianya berkisar antara dua hingga enam minggu. Biasanya, babi muda disajikan dalam bentuk utuh dan seringkali diolah dengan cara dipanggang dalam beragam hidangan istimewa dan perhelatan tertentu. Daging dari babi muda memiliki ciri khas berwarna pucat dan memiliki tekstur yang lembut. Kulit babi muda yang dimasak secara khusu...
Templo de Lima LocalizaciónPaís PerúDivisión LimaDirección Av. Javier Prado, La Molina Lima, PerúCoordenadas 12°04′11″S 76°56′56″O / -12.069713, -76.948897Información religiosaCulto Iglesia de Jesucristo de los Santos de los Últimos DíasEstatus COVID-19 Fase 2-B: Bautismos vicarios e investiduras con cita previaHistoria del edificioFundación 1986Construcción 1982-1986Datos arquitectónicosTipo TemploEstilo Moderna, un pináculoSuperficie 892 metros cuadrad...
Pameran Fife Folk Museum. Sebuah museum lokal di Suomussalmi Museum folklor[1] adalah sebuah museum yang menampilkan budaya dan warisan folklor. Museum semacam itu menampilkan kehidupan lokal dalam masyarakat pedesaan. Museum folklor biasanya menampilkan barang-barang sejarah yang dipakai sebagai bagian dari kehidupan sehari-hari masyarakar tersebut.[2] Contoh dari obyek tersebut meliputi busana dan alat. Kebanyakan museum foklor juga merupakan museum udara terbuka dan beberap...
Sicherheitskräfte des KosovoForca e Sigurisë së Kosovës Führung Oberbefehlshaber: Präsidentin des Kosovo, Vjosa Osmani Verteidigungsminister: Ejup Maqedonci Militärischer Befehlshaber: Generalmajor Bashkim Jashari Militärische Führung: Generalstab Sitz des Hauptquartiers: Pristina Militärische Stärke Aktive Soldaten: 5000 Reservisten: 3000 Wehrpflicht: abgeschafft Wehrtaugliche Bevölkerung: 1.300.540 im Alter von 16–49 (Stand 2014).[1] Wehrtauglichkeitsalter: vollendete...
For the football league of the same name that exists at this level since 2012, see Landesliga Bayern-Mitte (2012). Football leagueLandesliga Bayern-MitteFounded1963Folded2012Country GermanyState BavariaLevel on pyramidLevel 6Promotion toBayernligaRelegation to Bezirksoberliga Mittelfranken Bezirksoberliga Niederbayern Bezirksoberliga Oberpfalz Last championsSpVgg Landshut (2011–12) The Landesliga Bayern-Mitte (English: State league Bavaria-Central) was the sixth tier of the German...