Propylene

Propylene
Skeletal formula of propene
Skeletal formula of propene
Propylene
Propylene
Names
Preferred IUPAC name
Propene[1][2]
Identifiers
3D model (JSmol)
1696878
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.693 Edit this at Wikidata
EC Number
  • 204-062-1
852
KEGG
RTECS number
  • UC6740000
UNII
UN number 1077
In Liquefied petroleum gas: 1075
  • InChI=1S/C3H6/c1-3-2/h3H,1H2,2H3 checkY
    Key: QQONPFPTGQHPMA-UHFFFAOYSA-N checkY
  • InChI=1/C3H6/c1-3-2/h3H,1H2,2H3
    Key: QQONPFPTGQHPMA-UHFFFAOYAA
  • C=CC
  • CC=C
Properties
C3H6
Molar mass 42.081 g·mol−1
Appearance Colorless gas
Density 1.81 kg/m3, gas (1.013 bar, 15 °C)
1.745 kg/m3, gas (1.013 bar, 25 °C)
613.9 kg/m3, liquid
Melting point −185.2 °C (−301.4 °F; 88.0 K)
Boiling point −47.6 °C (−53.7 °F; 225.6 K)
0.61 g/m3
-31.5·10−6 cm3/mol
Viscosity 8.34 µPa·s at 16.7 °C
Structure
0.366 D (gas)
Hazards
GHS labelling:[3]
GHS02: Flammable
Danger
H220
P210, P377, P381, P403
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazards (white): no code
1
4
1
Flash point −108 °C (−162 °F; 165 K)
Safety data sheet (SDS) External MSDS
Related compounds
Related alkenes;
related groups
Ethylene, Isomers of Butylene;
Allyl, Propenyl
Related compounds
Propane, Propyne
Propadiene, 1-Propanol
2-Propanol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like odor.[4]

Propylene is a product of combustion from forest fires, cigarette smoke, and motor vehicle and aircraft exhaust.[5] It was discovered in 1850 by A. W. von Hoffman's student Captain (later Major General[6]) John Williams Reynolds as the only gaseous product of thermal decomposition of amyl alcohol to react with chlorine and bromine.[7]

Production

Steam cracking

The dominant technology for producing propylene is steam cracking, using propane as the feedstock. Cracking propane yields a mixture of ethylene, propylene, methane, hydrogen gas, and other related compounds. The yield of propylene is about 15%. The other principal feedstock is naphtha, especially in the Middle East and Asia.[8] Propylene can be separated by fractional distillation from the hydrocarbon mixtures obtained from cracking and other refining processes; refinery-grade propene is about 50 to 70%.[9] In the United States, shale gas is a major source of propane.

Olefin conversion technology

In the Phillips triolefin or olefin conversion technology, propylene is interconverted with ethylene and 2-butenes. Rhenium and molybdenum catalysts are used:[10]

The technology is founded on an olefin metathesis reaction discovered at Phillips Petroleum Company.[11][12] Propylene yields of about 90 wt% are achieved.

Related is the Methanol-to-Olefins/Methanol-to-Propene process. It converts synthesis gas (syngas) to methanol, and then converts the methanol to ethylene and/or propene. The process produces water as a by-product. Synthesis gas is produced from the reformation of natural gas or by the steam-induced reformation of petroleum products such as naphtha, or by gasification of coal or natural gas.

Fluid catalytic cracking

High severity fluid catalytic cracking (FCC) uses traditional FCC technology under severe conditions (higher catalyst-to-oil ratios, higher steam injection rates, higher temperatures, etc.) in order to maximize the amount of propene and other light products. A high severity FCC unit is usually fed with gas oils (paraffins) and residues, and produces about 20–25% (by mass) of propene on feedstock together with greater volumes of motor gasoline and distillate byproducts. These high temperature processes are expensive and have a high carbon footprint. For these reasons, alternative routes to propylene continue to attract attention.[13]

Other commercialized methods

On-purpose propylene production technologies were developed throughout the twentieth century. Of these, propane dehydrogenation technologies such as the CATOFIN and OLEFLEX processes have become common, although they still make up a minority of the market, with most of the olefin being sourced from the above mentioned cracking technologies. Platinum, chromia, and vanadium catalysts are common in propane dehydrogenation processes.

Market

Propene production has remained static at around 35 million tonnes (Europe and North America only) from 2000 to 2008, but it has been increasing in East Asia, most notably Singapore and China.[14] Total world production of propene is currently about half that of ethylene.

Research

The use of engineered enzymes has been explored but has not been commercialized.[15]

There is ongoing research into the use of oxygen carrier catalysts for the oxidative dehydrogenation of propane. This poses several advantages, as this reaction mechanism can occur at lower temperatures than conventional dehydrogenation, and may not be equilibrium-limited because oxygen is used to combust the hydrogen by-product.[16]

Uses

Propene is the second most important starting product in the petrochemical industry after ethylene. It is the raw material for a wide variety of products. Polypropylene manufacturers consume nearly two thirds of global production.[17] Polypropylene end uses include films, fibers, containers, packaging, and caps and closures. Propene is also used for the production of important chemicals such as propylene oxide, acrylonitrile, cumene, butyraldehyde, and acrylic acid. In the year 2013 about 85 million tonnes of propene were processed worldwide.[17]

Propene and benzene are converted to acetone and phenol via the cumene process.

Overview of the cumene process
Overview of the cumene process

Propene is also used to produce isopropyl alcohol (propan-2-ol), acrylonitrile, propylene oxide, and epichlorohydrin.[18] The industrial production of acrylic acid involves the catalytic partial oxidation of propene.[19] Propylene is an intermediate in the oxidation to acrylic acid.

In industry and workshops, propene is used as an alternative fuel to acetylene in Oxy-fuel welding and cutting, brazing and heating of metal for the purpose of bending. It has become a standard in BernzOmatic products and others in MAPP substitutes,[20] now that true MAPP gas is no longer available.

Reactions

Propene resembles other alkenes in that it undergoes addition reactions relatively easily at room temperature. The relative weakness of its double bond explains its tendency to react with substances that can achieve this transformation. Alkene reactions include: 1) polymerization, 2) oxidation, 3) halogenation and hydrohalogenation, 4) alkylation, 5) hydration, 6) oligomerization, and 7) hydroformylation.

Complexes of transition metals

Foundational to hydroformylation, alkene metathesis, and polymerization are metal-propylene complexes, which are intermediates in these processes. Propylene is prochiral, meaning that binding of a reagent (such as a metal electrophile) to the C=C group yields one of two enantiomers.

Polymerization

The majority of propene is used to form polypropylene, a very important commodity thermoplastic, through chain-growth polymerization.[17] In the presence of a suitable catalyst (typically a Ziegler–Natta catalyst), propene will polymerize. There are multiple ways to achieve this, such as using high pressures to suspending the catalyst in a solution of liquid propene, or running gaseous propene through a fluidized bed reactor.[21]

Oligomerizationn

In the presence of catalysts, propylene will form various short oligomers. It can dimerizes to give 2,3-dimethyl-1-butene and/or 2,3-dimethyl-2-butene.[22] or trimerise to form tripropylene.

Environmental safety

Propene is a product of combustion from forest fires, cigarette smoke, and motor vehicle and aircraft exhaust.[5] It is an impurity in some heating gases. Observed concentrations have been in the range of 0.1–4.8 parts per billion (ppb) in rural air, 4–10.5 ppb in urban air, and 7–260 ppb in industrial air samples.[9]

In the United States and some European countries a threshold limit value of 500 parts per million (ppm) was established for occupational (8-hour time-weighted average) exposure. It is considered a volatile organic compound (VOC) and emissions are regulated by many governments, but it is not listed by the U.S. Environmental Protection Agency (EPA) as a hazardous air pollutant under the Clean Air Act. With a relatively short half-life, it is not expected to bioaccumulate.[9]

Propene has low acute toxicity from inhalation and is not considered to be carcinogenic. Chronic toxicity studies in mice did not yield significant evidence suggesting adverse effects. Humans briefly exposed to 4,000 ppm did not experience any noticeable effects.[23] Propene is dangerous from its potential to displace oxygen as an asphyxiant gas, and from its high flammability/explosion risk.

Bio-propylene is the bio-based propylene.[24][25] It has been examined, motivated by diverse interests such a carbon footprint. Production from glucose has been considered.[26] More advanced ways of addressing such issues focus on electrification alternatives to steam cracking.

Storage and handling

Propene is flammable. Propene is usually stored as liquid under pressure, although it is also possible to store it safely as gas at ambient temperature in approved containers.[27]

Occurrence in nature

Propene is detected in the interstellar medium through microwave spectroscopy.[28] On September 30, 2013, NASA also announced that the Cassini orbiter spacecraft, part of the Cassini-Huygens mission, had discovered small amounts of naturally occurring propene in the atmosphere of Titan using spectroscopy.[29][30]

See also

References

  1. ^ "General Principles, Rules, and Conventions". Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 31. doi:10.1039/9781849733069-00001. ISBN 978-0-85404-182-4.
  2. ^ Moss, G.P. (web version). "P-14.3 Locants". Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013. London: Queen Mary University. Section P-14.3.4.2 (d). Retrieved 23 August 2024.
  3. ^ "Propylene". pubchem.ncbi.nlm.nih.gov. Retrieved 14 December 2021.
  4. ^ "Propylene".
  5. ^ a b Morgott, David (2018-01-04). "The Human Exposure Potential from Propylene Releases to the Environment". International Journal of Environmental Research and Public Health. 15 (1): 66. doi:10.3390/ijerph15010066. ISSN 1660-4601. PMC 5800165. PMID 29300328.
  6. ^ "Maj Gen John Williams Reynolds, FCS". geni_family_tree. 1816-12-25. Retrieved 2023-12-30.
  7. ^ Rasmussen, Seth C. (2018), Rasmussen, Seth C. (ed.), "Introduction", Acetylene and Its Polymers: 150+ Years of History, SpringerBriefs in Molecular Science, Cham: Springer International Publishing, pp. 1–19, doi:10.1007/978-3-319-95489-9_1, ISBN 978-3-319-95489-9, retrieved 2023-12-30
  8. ^ Ashford's Dictionary of Industrial Chemicals, Third edition, 2011, ISBN 978-0-9522674-3-0, pages 7766-9
  9. ^ a b c "Product Safety Assessment(PSA): Propylene". Dow Chemical Co. Archived from the original on 2013-08-28. Retrieved 2011-07-11.
  10. ^ Ghashghaee, Mohammad (2018). "Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins". Rev. Chem. Eng. 34 (5): 595–655. doi:10.1515/revce-2017-0003. S2CID 103664623.
  11. ^ Banks, R. L.; Bailey, G. C. (1964). "Olefin Disproportionation. A New Catalytic Process". Industrial & Engineering Chemistry Product Research and Development. 3 (3): 170–173. doi:10.1021/i360011a002.
  12. ^ Lionel Delaude; Alfred F. Noels (2005). "Metathesis". Kirk-Othmer Encyclopedia of Chemical Technology. Weinheim: Wiley-VCH. doi:10.1002/0471238961.metanoel.a01. ISBN 978-0-471-23896-6.
  13. ^ Schiffer, Zachary J.; Manthiram, Karthish (2017). "Electrification and Decarbonization of the Chemical Industry". Joule. 1 (1): 10–14. Bibcode:2017Joule...1...10S. doi:10.1016/j.joule.2017.07.008. hdl:1721.1/124019. S2CID 117360588.
  14. ^ Amghizar, Ismaël; Vandewalle, Laurien A.; Van Geem, Kevin M.; Marin, Guy B. (2017). "New Trends in Olefin Production". Engineering. 3 (2): 171–178. Bibcode:2017Engin...3..171A. doi:10.1016/J.ENG.2017.02.006.
  15. ^ de Guzman, Doris (October 12, 2012). "Global Bioenergies in bio-propylene". Green Chemicals Blog.
  16. ^ Wu, Tianwei; Yu, Qingbo; Roghair; et al. (2020). "Chemical looping oxidative dehydrogenation of propane: A comparative study of Ga-based, Mo-based, V-based oxygen carriers". Chemical Engineering and Processing - Process Intensification. 157: 108137. Bibcode:2020CEPPI.15708137W. doi:10.1016/j.cep.2020.108137. ISSN 0255-2701.
  17. ^ a b c "Market Study: Propylene (2nd edition), Ceresana, December 2014". ceresana.com. Retrieved 2015-02-03.
  18. ^ Budavari, Susan, ed. (1996). "8034. Propylene". The Merck Index, Twelfth Edition. New Jersey: Merck & Co. pp. 1348–1349.
  19. ^ J.G.L., Fierro (Ed.) (2006). Metal Oxides, Chemistry and Applications. CRC Press. pp. 414–455.
  20. ^ For example, "MAPP-Pro"
  21. ^ Heggs, T. Geoffrey (2011-10-15), "Polypropylene", in Wiley-VCH Verlag GmbH & Co. KGaA (ed.), Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, pp. o21_o04, doi:10.1002/14356007.o21_o04, ISBN 978-3-527-30673-2, retrieved 2021-07-09
  22. ^ Olivier-Bourbigou, H.; Breuil, P. A. R.; Magna, L.; Michel, T.; Espada Pastor, M. Fernandez; Delcroix, D. (2020). "Nickel Catalyzed Olefin Oligomerization and Dimerization" (PDF). Chemical Reviews. 120 (15): 7919–7983. doi:10.1021/acs.chemrev.0c00076. PMID 32786672. S2CID 221124789.
  23. ^ PubChem. "Hazardous Substances Data Bank (HSDB): 175". pubchem.ncbi.nlm.nih.gov. Retrieved 2021-07-09.
  24. ^ Bio-based drop-in, smart drop-in and dedicated chemicals
  25. ^ Duurzame bioplastics op basis van hernieuwbare grondstoffen
  26. ^ Guzman, Doris de (12 October 2012). "Global Bioenergies in bio-propylene". Green Chemicals Blog. Retrieved 2021-07-09.
  27. ^ Encyclopedia of Chemical Technology, Fourth edition, 1996, ISBN 0471-52689-4 (v.20), page 261
  28. ^ Marcelino, N.; Cernicharo, J.; Agúndez, M.; et al. (2007-08-10). "Discovery of Interstellar Propylene (CH2CHCH3): Missing Links in Interstellar Gas-Phase Chemistry". The Astrophysical Journal. 665 (2). IOP: L127 – L130. arXiv:0707.1308. Bibcode:2007ApJ...665L.127M. doi:10.1086/521398. S2CID 15832967.
  29. ^ "Spacecraft finds propylene on Saturn moon, Titan". UPI.com. 2013-09-30. Retrieved 2013-11-12.
  30. ^ "Cassini finds ingredient of household plastic on Saturn moon". Spacedaily.com. Retrieved 2013-11-12.

Read other articles:

La supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs. La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (−273,15 °C). La supraconductivité perm...

 

1960 compilation album by Peggy LeeAll Aglow AgainCompilation album by Peggy LeeReleasedJanuary 1960RecordedAugust 1959GenreTraditional popLength36:11LabelCapitolProducerDave CavanaughPeggy Lee chronology Latin ala Lee!(1960) All Aglow Again(1960) Pretty Eyes(1960) Professional ratingsReview scoresSourceRatingAllmusic [1] All Aglow Again! is a 1960 compilation album (see 1960 in music) by Peggy Lee, arranged by Jack Marshall. Track listing 1. Fever (Eddie Cooley, John Davenpor...

 

Montañas Baiu Cordillera Cárpatos Orientales Exteriores y Cárpatos meridionalesCoordenadas 45°22′00″N 25°37′00″E / 45.36666667, 25.61666667Localización administrativaPaís RumaniaCaracterísticas generales[editar datos en Wikidata] Montañas Baiului Mapa de los Cárpatos orientales, con Baiu en el extremo suroeste Las montañas de Baiu, en rumano: Munții/Muntele Baiu/Baiul/Baiului/Munții Gârbova, en húngaro: Baj-hegység) son montañas situadas en e...

AwardMilitary and Native Guard Merit MedalMédaille du Mérite des Militaires et Gardes Civils IndigènesMédaille Militaire du Gouvernement GénéralTypeOrder of MeritAwarded forSpecial case of serious injury or distinguished military servicesDescriptionSee belowSponsored byGeneral Commander in Chief, Resident-Superior of Annam, and the Resident-Superior of TonkinCountry French protectorates of Annam and Tonkin( French Indochina)Presented byGovernor-General of French IndochinaEligibilityAnna...

 

Bistum Autun Karte Bistum Autun Basisdaten Staat Frankreich Kirchenprovinz Dijon Metropolitanbistum Erzbistum Dijon Diözesanbischof Benoît Rivière Generalvikar Georges Auduc Gründung 15. Dezember 1962 Fläche 8575 km² Pfarreien 49 (2020 / AP 2021) Einwohner 549.783 (2020 / AP 2021) Katholiken 523.800 (2020 / AP 2021) Anteil 95,3 % Diözesanpriester 123 (2020 / AP 2021) Ordenspriester 6 (2020 / AP 2021) Katholiken je Priester 4060 Ständige Diakone 33 (2020 / AP 2021) Ordensbrüder 4...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Polish Fighting Team – news · newspapers · books · scholar · JSTOR (July 2010) Polish Fighting TeamBadge of the Polish Fighting TeamActive13 February 1943 to 22 July 1943Country United KingdomAllegiance Polish Government in exileBranch Royal Air Force...

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Five-Year Plans of Romania – news · newspapers · books · scholar · JSTOR (September 2022) (Learn how and when to remove this template message) Part of a series on theSocialist Republic ofRomania Organizations Communist Party Securitate Army Union of Communist Y...

 

Part of a series on the History of Catalonia Ancient Prehistory   Iberians c. 6th BC – c. 1st BC Greek colonies c. 6th BC – c. 1st BC Roman conquest of Hispania 218 BC – 19 BC Tarraconensis 27 BC – 476 AD Medieval Visigoths 5th century – c.720 Al-Andalus 713–1154 Catalan counties / Gothia c.760 – 12th century County of Barcelona 801–1162 Crown of Aragon 1162–1715 Principality of Catalonia c. 12th century – 1714 Compromise of Caspe 1412 War of the Remences 1462–1486 ...

 

1946 film by Robert Zigler Leonard The Secret HeartTheatrical release posterDirected byRobert Z. LeonardScreenplay byWhitfield CookAnne Morrison ChapinStory byRose FrankenWilliam Brown MeloneyProduced byEdwin H. KnopfStarringClaudette ColbertWalter PidgeonJune AllysonCinematographyGeorge J. FolseyEdited byAdrienne FazanMusic byBronislau KaperProductioncompanyMetro-Goldwyn-MayerDistributed byLoew's Inc.Release date December 25, 1946 (1946-12-25) Running time97 minutesCountryUnit...

Filipino politician (born 1989) Not to be confused with Vic Sotto. In this Philippine name, the middle name or maternal family name is Nubla and the surname or paternal family name is Sotto. The HonourableVico SottoOfficial portrait, 2022Mayor of PasigIncumbentAssumed office June 30, 2019Vice mayor Iyo Bernardo (2019–2022) Dodot Jaworski (2022–present) Preceded byBobby EusebioMember of the Pasig City Council from the 1st DistrictIn officeJune 30, 2016 – June 30, 20...

 

English cricketer (1888–1916) Percy JeevesPercy Jeeves with Warwickshire insigniaPersonal informationBorn(1888-03-05)5 March 1888Earlsheaton, Yorkshire, EnglandDied22 July 1916(1916-07-22) (aged 28)High Wood, Somme, FranceHeight5 ft 8 in (1.73 m)BattingRight-handedBowlingRight-arm medium-fastDomestic team information YearsTeam1912–1914Warwickshire First-class debut30 May 1912 Warwickshire v AustraliaLast First-class27 August 1914 Warwickshire v Surr...

 

Haarlem SpaarnwoudeGeneral informationLocationHaarlem, NetherlandsCoordinates52°22′58″N 4°40′16″E / 52.38278°N 4.67111°E / 52.38278; 4.67111Line(s)Amsterdam–Rotterdam railwayPlatforms2Other informationStation codeHlmsHistoryOpened24 May 1998Services Preceding station Nederlandse Spoorwegen Following station Haarlemtowards Zandvoort NS Sprinter 5400 Halfweg-Zwanenburgtowards Amsterdam Centraal Haarlemtowards Hoorn NS Sprinter 4800 LocationHaarlem Spaarnwou...

As of September 2020, this is a list of supermarket chains, past and present, which operate or have branches in more than one country, whether under the parent corporation's name or another name. For supermarkets that are only in one country, see the breakdown by continent at the bottom of this page. Numbers are provided as the largest reported, and are largely inaccurate. Multinational Company Headquarters Served countries (besides the headquarters) Map Number of locations Number of employee...

 

Federasi Sepak Bola KroasiaUEFADidirikan13 Juni 1912Kantor pusatZagrebBergabung dengan FIFA17 Juli 1941 (Sebagai Negara Merdeka Kroasia)3 Juli 1992 (Sebagai Kroasia)Bergabung dengan UEFA16 Juni 1993PresidenMarijan KustićWebsitewww.hns-cff.hr Federasi Sepak Bola Kroasia (bahasa Kroasia: Hrvatski nogometni savez, HNS) adalah badan pengatur sepak bola di Kroasia. Dibentuk pada tahun 1912 yang berbasis di ibu kota Zagreb. Organisasi ini adalah anggota FIFA dan UEFA, dan bertanggung jawab unt...

 

  هذه المقالة عن أحمد البوعناني. لمعانٍ أخرى، طالع البوعناني (توضيح). أحمد البوعناني أحمد البوعناني سنة 1970 معلومات شخصية الميلاد 16 نوفمبر 1938(1938-11-16)الدار البيضاء،  المغرب الوفاة 6 فبراير 2011دمنات مواطنة المغرب  الحياة العملية المدرسة الأم المعهد العالي للدراسات ال...

ArmbianArmbian Desktop imageDeveloperArmbian communityOS familyLinux (Unix-like)Working stateCurrentSource modelOpen sourceLatest release24.2.1[1] / 3 March 2024; 16 days ago (3 March 2024)Repositorygithub.com/armbian/build Available inEnglishUpdate methodAPTPackage managerdpkgPlatformsARM RISCV64 AMD64Kernel typeMonolithicUserlandGNULicenseGPLv2Official websitewww.armbian.com Armbian is a computing build framework that allows users to create system images with configurat...

 

此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2015年8月19日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 爱彼迎AirbnbAirbnb驻加拿大多伦多办公室公司類型上市公司股票代號NASDAQ:ABNB成立2008年創辦人布萊恩·切斯基、喬·傑比亞、內森·布萊卡斯亞克 代表人物布萊恩·切斯基(執行長)喬·傑比亞(CPO)Nathan Blecharczyk(CTO)總部 美國...

 

Cuban baseball player (1941-2017) Baseball player Paul CasanovaCatcherBorn: (1941-12-21)December 21, 1941Colón, CubaDied: August 12, 2017(2017-08-12) (aged 75)Miami, Florida, U.S.Batted: RightThrew: RightMLB debutSeptember 18, 1965, for the Washington SenatorsLast MLB appearanceSeptember 9, 1974, for the Atlanta BravesMLB statisticsBatting average.225Home runs50Runs batted in252 Teams Washington Senators (1965–1971) Atlanta Braves (1972–1974) Career hig...

Caja de cambios semiautomática DSG (con embrague doble) de Volkswagen Una transmisión semiautomática es un tipo de transmisión mecánica de varias velocidades en la que parte de su accionamiento está automatizado (típicamente, la activación del embrague), pero aún se requiere la intervención manual del conductor para poner en marcha el vehículo desde un punto muerto o para cambiar de marcha. La mayoría de las transmisiones semiautomáticas utilizadas en automóviles y motocicletas ...

 

British politician Bayfield Hall, Norfolk Henry Jodrell (bapt. 30 May 1750[1] – 11 March 1814) was an English barrister and Member of Parliament. He was a younger son of Paul Jodrell of Duffield, Derbyshire, the Solicitor-General to Frederick, Prince of Wales, and his wife, Elizabeth.[2] Richard Paul Jodrell, (1745 – 1831), classical scholar and playwright, and Sir Paul Jodrell (died 1803), physician to the Nabob of Arcot, were his elder brothers.[3] He was educate...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!