In chemistry, disproportionation, sometimes called dismutation, is a redox reaction in which one compound of intermediate oxidation state converts to two compounds, one of higher and one of lower oxidation state.[1][2] The reverse of disproportionation, such as when a compound in an intermediate oxidation state is formed from precursors of lower and higher oxidation states, is called comproportionation, also known as symproportionation.
More generally, the term can be applied to any desymmetrizing reaction where two molecules of one type react to give one each of two different types:[3]
2 A → A' + A"
This expanded definition is not limited to redox reactions, but also includes some molecular autoionization reactions, such as the self-ionization of water. In contrast, some authors use the term redistribution to refer to reactions of this type (in either direction) when only ligand exchange but no redox is involved and distinguish such processes from disproportionation and comproportionation. For example, the Schlenk equilibrium
2 RMgX → R2Mg + MgX2
is an example of a redistribution reaction.
History
The first disproportionation reaction to be studied in detail was:
2 Sn2+ → Sn4+ + Sn
This was examined using tartrates by Johan Gadolin in 1788. In the Swedish version of his paper he called it söndring.[4][5]
The chlorine reactant is in oxidation state 0. In the products, the chlorine in the Cl− ion has an oxidation number of −1, having been reduced, whereas the oxidation number of the chlorine in the ClO−3 ion is +5, indicating that it has been oxidized.
In the Boudouard reaction, carbon monoxide disproportionates to carbon and carbon dioxide. The reaction is for example used in the HiPco method for producing carbon nanotubes; high-pressure carbon monoxide disproportionates when catalysed on the surface of an iron particle:
2 CO → C + CO2
Nitrogen has oxidation state +4 in nitrogen dioxide, but when this compound reacts with water, it forms both nitric acid and nitrous acid, where nitrogen has oxidation states +5 and +3 respectively:
2 NO2 + H2O → HNO3 + HNO2
In hydrazoic acid and sodium azide, each of the 3 nitrogen atoms of these very energetic linear polyatomic species has an oxidation state of −1⁄3. These unstable and highly toxic compounds will disproportionate in aqueous solution to form gaseous nitrogen (N2) and ammonium ions, or ammonia, depending on pH conditions, as it can be conveniently verified by means of the Frost diagram for nitrogen:[12]
Under acidic conditions, hydrazoic acid disproportionates as:
3 HN3 + H+ → 4 N2 + NH+4
Under neutral, or basic, conditions, the azide anion disproportionates as:
In free-radical chain-growth polymerization, chain termination can occur by a disproportionation step in which a hydrogen atom is transferred from one growing chain molecule to another one, which produces two dead (non-growing) chains.[15]
The dismutation of pyruvic acid in other small organic molecules (ethanol + CO2, or lactate and acetate, depending on the environmental conditions) is also an important step in fermentation reactions. Fermentation reactions can also be considered as disproportionation or dismutation biochemical reactions. Indeed, the donor and acceptor of electrons in the redox reactions supplying the chemical energy in these complex biochemical systems are the same organic molecules simultaneously acting as reductant or oxidant.
While in respiration electrons are transferred from substrate (electron donor) to an electron acceptor, in fermentation part of the substrate molecule itself accepts the electrons. Fermentation is therefore a type of disproportionation, and does not involve an overall change in oxidation state of the substrate. Most of the fermentative substrates are organic molecules. However, a rare type of fermentation may also involve the disproportionation of inorganic sulfur compounds in certain sulfate-reducing bacteria.[18]
Disproportionation of sulfur intermediates
Sulfur isotopes of sediments are often measured for studying environments in the Earth's past (paleoenvironment). Disproportionation of sulfur intermediates, being one of the processes affecting sulfur isotopes of sediments, has drawn attention from geoscientists for studying the redox conditions in the oceans in the past.
Sulfate-reducing bacteria fractionate sulfur isotopes as they take in sulfate and produce sulfide. Prior to 2010s, it was thought that sulfate reduction could fractionate sulfur isotopes up to 46 ‰[19] and fractionation larger than 46 ‰ recorded in sediments must be due to disproportionation of sulfur intermediates in the sediment. This view has changed since the 2010s.[20] As substrates for disproportionation are limited by the product of sulfate reduction, the isotopic effect of disproportionation should be less than 16 ‰ in most sedimentary settings.[9]
Disproportionation can be carried out by microorganisms obligated to disproportionation or microorganisms that can carry out sulfate reduction as well. Common substrates for disproportionation include elemental sulfur (S8), thiosulfate (S2O2−3) and sulfite (SO2−3).[9]
The Claus reaction is one of the chemical reactions involved in the Claus process used for the desulfurization of gases in the oil refinery plants and leading to the formation of solid elemental sulfur (S8), which is easier to store, transport, reuse when possible, and dispose of.
^Shriver, D. F.; Atkins, P. W.; Overton, T. L.; Rourke, J. P.; Weller, M. T.; Armstrong, F. A. "Inorganic Chemistry" W. H. Freeman, New York, 2006. ISBN0-7167-4878-9.
^Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN0-12-352651-5.
^J. Meyer and W. Schramm, Z. Anorg. Chem., 132 (1923) 226. Cited in: A Comprehensive Treatise on Theoretical and Inorganic Chemistry, by J.W. Meller, John Wiley
and Sons, New York, Vol. XII, p. 225.
^Cowie, J. M. G. (1991). Polymers: Chemistry & Physics of Modern Materials (2nd ed.). Blackie. p. 58. ISBN0-216-92980-6.