Modulational instability

In the fields of nonlinear optics and fluid dynamics, modulational instability or sideband instability is a phenomenon whereby deviations from a periodic waveform are reinforced by nonlinearity, leading to the generation of spectral-sidebands and the eventual breakup of the waveform into a train of pulses.[1][2][3]

It is widely believed that the phenomenon was first discovered − and modeled − for periodic surface gravity waves (Stokes waves) on deep water by T. Brooke Benjamin and Jim E. Feir, in 1967.[4] Therefore, it is also known as the Benjamin−Feir instability. However, spatial modulation instability of high-power lasers in organic solvents was observed by Russian scientists N. F. Piliptetskii and A. R. Rustamov in 1965,[5] and the mathematical derivation of modulation instability was published by V. I. Bespalov and V. I. Talanov in 1966.[6] Modulation instability is a possible mechanism for the generation of rogue waves.[7][8]

Initial instability and gain

Modulation instability only happens under certain circumstances. The most important condition is anomalous group velocity dispersion, whereby pulses with shorter wavelengths travel with higher group velocity than pulses with longer wavelength.[3] (This condition assumes a focusing Kerr nonlinearity, whereby refractive index increases with optical intensity.)[3]

The instability is strongly dependent on the frequency of the perturbation. At certain frequencies, a perturbation will have little effect, while at other frequencies, a perturbation will grow exponentially. The overall gain spectrum can be derived analytically, as is shown below. Random perturbations will generally contain a broad range of frequency components, and so will cause the generation of spectral sidebands which reflect the underlying gain spectrum.

The tendency of a perturbing signal to grow makes modulation instability a form of amplification. By tuning an input signal to a peak of the gain spectrum, it is possible to create an optical amplifier.

Mathematical derivation of gain spectrum

The gain spectrum can be derived [3] by starting with a model of modulation instability based upon the nonlinear Schrödinger equation[clarification needed]

which describes the evolution of a complex-valued slowly varying envelope with time and distance of propagation . The imaginary unit satisfies The model includes group velocity dispersion described by the parameter , and Kerr nonlinearity with magnitude A periodic waveform of constant power is assumed. This is given by the solution

where the oscillatory phase factor accounts for the difference between the linear refractive index, and the modified refractive index, as raised by the Kerr effect. The beginning of instability can be investigated by perturbing this solution as

where is the perturbation term (which, for mathematical convenience, has been multiplied by the same phase factor as ). Substituting this back into the nonlinear Schrödinger equation gives a perturbation equation of the form

where the perturbation has been assumed to be small, such that The complex conjugate of is denoted as Instability can now be discovered by searching for solutions of the perturbation equation which grow exponentially. This can be done using a trial function of the general form

where and are the wavenumber and (real-valued) angular frequency of a perturbation, and and are constants. The nonlinear Schrödinger equation is constructed by removing the carrier wave of the light being modelled, and so the frequency of the light being perturbed is formally zero. Therefore, and don't represent absolute frequencies and wavenumbers, but the difference between these and those of the initial beam of light. It can be shown that the trial function is valid, provided and subject to the condition

This dispersion relation is vitally dependent on the sign of the term within the square root, as if positive, the wavenumber will be real, corresponding to mere oscillations around the unperturbed solution, whilst if negative, the wavenumber will become imaginary, corresponding to exponential growth and thus instability. Therefore, instability will occur when

  that is for  

This condition describes the requirement for anomalous dispersion (such that is negative). The gain spectrum can be described by defining a gain parameter as so that the power of a perturbing signal grows with distance as The gain is therefore given by

where as noted above, is the difference between the frequency of the perturbation and the frequency of the initial light. The growth rate is maximum for

Modulation instability in soft systems

Modulation instability of optical fields has been observed in photo-chemical systems, namely, photopolymerizable medium.[9][10][11][12] Modulation instability occurs owing to inherent optical nonlinearity of the systems due to photoreaction-induced changes in the refractive index.[13] Modulation instability of spatially and temporally incoherent light is possible owing to the non-instantaneous response of photoreactive systems, which consequently responds to the time-average intensity of light, in which the femto-second fluctuations cancel out.[14]

References

  1. ^ Benjamin, T. Brooke; Feir, J.E. (1967). "The disintegration of wave trains on deep water. Part 1. Theory". Journal of Fluid Mechanics. 27 (3): 417–430. Bibcode:1967JFM....27..417B. doi:10.1017/S002211206700045X. S2CID 121996479.
  2. ^ Benjamin, T.B. (1967). "Instability of Periodic Wavetrains in Nonlinear Dispersive Systems". Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 299 (1456): 59–76. Bibcode:1967RSPSA.299...59B. doi:10.1098/rspa.1967.0123. S2CID 121661209. Concluded with a discussion by Klaus Hasselmann.
  3. ^ a b c d Agrawal, Govind P. (1995). Nonlinear fiber optics (2nd ed.). San Diego (California): Academic Press. ISBN 978-0-12-045142-5.
  4. ^ Yuen, H.C.; Lake, B.M. (1980). "Instabilities of waves on deep water". Annual Review of Fluid Mechanics. 12: 303–334. Bibcode:1980AnRFM..12..303Y. doi:10.1146/annurev.fl.12.010180.001511.
  5. ^ Piliptetskii, N. F.; Rustamov, A. R. (31 May 1965). "Observation of Self-focusing of Light in Liquids". JETP Letters. 2 (2): 55–56.
  6. ^ Bespalov, V. I.; Talanov, V. I. (15 June 1966). "Filamentary Structure of Light Beams in Nonlinear Liquids". ZhETF Pisma Redaktsiiu. 3 (11): 471–476. Bibcode:1966ZhPmR...3..471B. Archived from the original on 31 July 2020. Retrieved 17 February 2021.
  7. ^ Janssen, Peter A.E.M. (2003). "Nonlinear four-wave interactions and freak waves". Journal of Physical Oceanography. 33 (4): 863–884. Bibcode:2003JPO....33..863J. doi:10.1175/1520-0485(2003)33<863:NFIAFW>2.0.CO;2.
  8. ^ Dysthe, Kristian; Krogstad, Harald E.; Müller, Peter (2008). "Oceanic rogue waves". Annual Review of Fluid Mechanics. 40 (1): 287–310. Bibcode:2008AnRFM..40..287D. doi:10.1146/annurev.fluid.40.111406.102203.
  9. ^ Burgess, Ian B.; Shimmell, Whitney E.; Saravanamuttu, Kalaichelvi (2007-04-01). "Spontaneous Pattern Formation Due to Modulation Instability of Incoherent White Light in a Photopolymerizable Medium". Journal of the American Chemical Society. 129 (15): 4738–4746. doi:10.1021/ja068967b. ISSN 0002-7863. PMID 17378567.
  10. ^ Basker, Dinesh K.; Brook, Michael A.; Saravanamuttu, Kalaichelvi (2015). "Spontaneous Emergence of Nonlinear Light Waves and Self-Inscribed Waveguide Microstructure during the Cationic Polymerization of Epoxides". The Journal of Physical Chemistry C. 119 (35): 20606–20617. doi:10.1021/acs.jpcc.5b07117.
  11. ^ Biria, Saeid; Malley, Philip P. A.; Kahan, Tara F.; Hosein, Ian D. (2016-03-03). "Tunable Nonlinear Optical Pattern Formation and Microstructure in Cross-Linking Acrylate Systems during Free-Radical Polymerization". The Journal of Physical Chemistry C. 120 (8): 4517–4528. doi:10.1021/acs.jpcc.5b11377. ISSN 1932-7447.
  12. ^ Biria, Saeid; Malley, Phillip P. A.; Kahan, Tara F.; Hosein, Ian D. (2016-11-15). "Optical Autocatalysis Establishes Novel Spatial Dynamics in Phase Separation of Polymer Blends during Photocuring". ACS Macro Letters. 5 (11): 1237–1241. doi:10.1021/acsmacrolett.6b00659. PMID 35614732.
  13. ^ Kewitsch, Anthony S.; Yariv, Amnon (1996-01-01). "Self-focusing and self-trapping of optical beams upon photopolymerization" (PDF). Optics Letters. 21 (1): 24–6. Bibcode:1996OptL...21...24K. doi:10.1364/ol.21.000024. ISSN 1539-4794. PMID 19865292.
  14. ^ Spatial Solitons | Stefano Trillo | Springer.

Further reading

Read other articles:

2001 studio album by Chris TomlinThe Noise We MakeStudio album by Chris TomlinReleasedMarch 1, 2001GenreWorshipLabelSparrow/sixstepProducerNathan Nockels and Chris TomlinChris Tomlin chronology Authentic(1998) The Noise We Make(2001) Not to Us(2002) The Noise We Make is the first commercial solo release by American contemporary Christian music singer Chris Tomlin through sixstepsrecords in 2001. Critical reception Professional ratingsReview scoresSourceRatingCCM Magazine[1]Cro...

 

Les Armoiries du Nicaragua a été adopté pour la première fois le 21 août 1823 comme armoiries de l’Amérique centrale, mais a subi plusieurs changements au cours de son histoire, jusqu’à ce que sa dernière version (à partir de 1999) soit introduite en 1971. Elle est composée d'un triangle équilatéral qui représente l'égalité. Dans la partie inférieure, on peut voir une cordillère composée de cinq volcans entre deux océans qui représentent l'unité et la fraternité des ...

 

2020 studio album my EXID For other uses, see Blessed. B.L.E.S.S.E.DDigital and CD only editionStudio album by EXIDReleasedAugust 19, 2020 (2020-08-19)GenreJ-popR&BDeep HouseLanguageJapaneseLabelTokuma Japan CommunicationsProducerShinsadong TigerLE☆Taku TakahashiNanako AshidaMinamiEXID chronology WE(2019) B.L.E.S.S.E.D(2020) X(2022) Singles from B.L.E.S.S.E.D Bad Girl For YouReleased: December 25, 2019 B.L.E.S.S.E.DReleased: August 19, 2020 B.L.E.S.S.E.D is the second...

Galaxy in the constellation Lupus NGC 5643NGC 5643 by Hubble Space TelescopeObservation data (J2000 epoch)ConstellationLupusRight ascension14h 32m 40.7s[1]Declination−44° 10′ 28″[1]Redshift1199 ± 2 km/s[1]Distance41 Mly (12.5 Mpc)[2]Apparent magnitude (V)10.7CharacteristicsTypeSAB(rs)c [1]Apparent size (V)4.6′ × 4.0′[1]Other designationsESO 272- G 016, MCG -07-30-003, PGC 51969[1] NG...

 

Isabel LucasLucas at the open of the Christian Dior couture Sydney CBD store in January 2013.Lahir29 Januari 1985 (umur 38)Melbourne, AustraliaKebangsaanAustralianPekerjaanActress, modelTahun aktif2003–present Isabel Lucas (lahir 29 Januari 1985) adalah model dan pemeran berkebangsaan Australia. Namanya dikenal melalui perannya dalam Home and Away (2003–2006), Transformers: Revenge of the Fallen (2009), Daybreakers (2009), The Pacific (2010), Immortals (2011), dan Red Dawn (2012...

 

Patung dengan khiton pendekKhiton kusir Ionia Khiton (bahasa Yunani Kuno: χιτών, translit. khitōn) adalah sejenis tunik yang diikatkan di bahu, dikenakan oleh pria dan wanita Yunani Kuno dan Romawi.[1][2] Ada dua jenis utama khiton. Salah satunya adalah khiton Doria dan kemudian khiton Ionia. Menurut Herodotus, legenda terkenal adalah bahwa wanita Athena mulai memakai khiton sebagai lawan dari peplos setelah beberapa wanita menikam seorang utusan sampai mati den...

The VelvetAlbum mini karya Red VelvetDirilis17 Maret 2016Direkam2015–2016GenreK-popR&BBalladPopDurasi33:03BahasaKoreaLabelSM EntertainmentKronologi Red Velvet The Red(2015)The Red2015 The Velvet(2016) Russian Roulette(2016)Russian Roulette2016 Singel dalam album The Velvet One of These NightsDirilis: 17 Maret 2016 The Velvet adalah album mini kedua dari grup vokal wanita Korea Selatan Red Velvet. Album ini dirilis pada tanggal 17 Maret 2016 oleh S.M. Entertainment. Album ini merupak...

 

Exploring properties of the integers with complex analysis Riemann zeta function ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): colors close to black denote values close to zero, while hue encodes the value's argument. In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers.[1] It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introducti...

 

HD 209458 bPerbandingan ukuran HD 209458 b dengan JupiterPenemuanDitemukan olehD. CharbonneauT. BrownDavid LathamM. MayorG.W. HenryG. Marcy Kerry O'Connor R.P. ButlerS.S. VogtSitus penemuanObservatorium Ketinggian TinggiObservatorium JenewaTanggal penemuan9 September 1999Metode deteksiKecepatan radialCiri-ciri orbitSumbu semimayor004.747 AU (7,101×1011 km)Eksentrisitas0,014±0,009[1]Periode orbit3,52474541 ± 0,00000025 h84,5938898 jInklinasi86,1 ± 0,1Waktu ...

For the larger protected area, see La Mesa Watershed Reservation. La Mesa EcoparkLa Mesa Resort ZoneThe ecopark pond in November 2011Approximate boundaries of La Mesa Ecopark are shown in light green.LocationEast Fairview, Greater Lagro, Quezon City, Metro Manila, the PhilippinesCoordinates14°42′43″N 121°04′27.5″E / 14.71194°N 121.074306°E / 14.71194; 121.074306Area33 hectares (82 acres)Opened1950sFounderMetropolitan Waterworks and Sewerage SystemEtymologyL...

 

Professional wrestling stable This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Age of the Fall – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) Professional wrestling stable The Age of the FallThe Age of the Fall logoStableName(s)The Age of the...

 

Not to be confused with Sikandar Shah Miri, the Kashmiri Sultan (r. 1389–1413). Sultan of Delhi Sikandar Khan LodiSultan of DelhiSultan of the Lodi DynastySultan of HindustanAbu Al-Muzaffar Ghazi Sultan Sikandar Khan LodiThe tomb of Sikandar Lodi30th Sultan of DelhiReign17 July 1489 – 21 November 1517Coronation17 July 1489PredecessorBahlul Khan LodiSuccessorIbrahim Khan LodiBorn17 July 1458DelhiDied21 November 1517 (aged 59)AgraBurialLodi Gardens, DelhiIssueIbrahim Khan Lodi Mahmud Khan L...

Football stadium in Brescia, Italy This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Stadio Mario Rigamonti – news · newspapers · books · scholar · JSTOR (July 2013) (Learn how and when to remove this template message) Stadio Mario RigamontiStadio Mario Rigamonti in 2020LocationBrescia, ItalyOwnerMunicipality ...

 

Pour les articles homonymes, voir Communauté française, CFB et FWB. Communauté française de BelgiqueFédération Wallonie-Bruxelles (Drapeau) (Logo) Administration Pays Belgique Capitale Bruxelles Gouvernement de la Communauté française Gouvernement Jeholet Parlement Parlement de la Communauté française Hymne Aucun Langue officielle Français Géographie Coordonnées 50° 50′ 48″ nord, 4° 21′ 09″ est Superficie 1 615 100 ha =&...

 

Indian chain of amusement parks WonderlaLocationKochi, Hyderabad, BengaluruThemeAmusement ParkOwnerKochouseph ChittilappillyArun ChittilappillyOperated byWonderla Holidays LimitedOpened2000; 23 years ago (2000) in Kochi2005; 18 years ago (2005) in BengaluruApril 2016; 7 years ago (2016-04) in HyderabadPrevious namesVeegaland at KochiOperating seasonAll year roundVisitors per annum25 million[citation needed]Water slides72 water...

Commercial building in Manhattan, New York United States historic placeVan Tassell and Kearney Horse Auction MartU.S. National Register of Historic PlacesNYC Landmark No. 2205 Location126-128 East 13th Street, New York, New YorkCoordinates40°43′58″N 73°59′21″W / 40.73278°N 73.98917°W / 40.73278; -73.98917Arealess than one acreBuilt1903ArchitectJardine, Kent & JardineArchitectural styleBeaux ArtsNRHP reference No.07001233[1&#...

 

Social Impact Entertainment on the Development-Entertainment spectrum,[1] with its closest neighbor Entertainment-Education Social Impact Entertainment (SIE) is all storytelling that is self-aware of its potential impact on its audiences and incorporates that knowledge to effect positive change at the individual, local, or global scale on one or more social issues, as defined by the SIE Society.[2][3] The practitioners in this field are predominately producers and dire...

 

American actress and model (1926–1962) Norma Jeane redirects here. For other uses, see Norma Jean (disambiguation) and Marilyn Monroe (disambiguation). Marilyn MonroeMonroe in 1953BornNorma Jeane Mortenson[a](1926-06-01)June 1, 1926Los Angeles, California, U.S.DiedAugust 4, 1962(1962-08-04) (aged 36)Los Angeles, California, U.S.Cause of deathBarbiturate overdoseBurial placeWestwood Village Memorial Park CemeteryOther namesNorma Jeane BakerOccupationsActressmodelYears&...

Devin KennyKenny in 2021 (photo by Jay Tovar)Born1987 (age 35–36)Hyde Park, Chicago, Illinois, U.S.Alma materCooper Union University of California Los AngelesWebsitewww.devinkenny.info Devin Kenny (born 1987) is an interdisciplinary artist, musician, writer, and curator who works across music, text, sculpture, painting, videos, photography, garments, and performances.[1] Kenny's work has addressed network technology and the Black Atlantic, gentrification, the prison in...

 

United States historic placeSouthern Seminary Main BuildingU.S. National Register of Historic PlacesVirginia Landmarks Register Southern Seminary Main Building, November 2012Show map of VirginiaShow map of the United StatesLocationJct. of Ivy and Park Aves., Buena Vista, VirginiaCoordinates37°44′24″N 79°21′2″W / 37.74000°N 79.35056°W / 37.74000; -79.35056Area9.9 acres (4.0 ha)Built1890 (1890)ArchitectFoulks, S.W.Architectural styleRenaissance...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!