Transport of energy by wind waves, and the capture of that energy to do useful work
This article is about transport and capture of energy in ocean waves. For other aspects of waves in the ocean, see Wind wave. For other uses of wave or waves, see Wave (disambiguation).
Waves are generated primarily by wind passing over the sea's surface and also by tidal forces, temperature variations, and other factors. As long as the waves propagate slower than the wind speed just above, energy is transferred from the wind to the waves. Air pressure differences between the windward and leeward sides of a wave crest and surface friction from the wind cause shear stress and wave growth.[1]
Wave power as a descriptive term is different from tidal power, which seeks to primarily capture the energy of the current caused by the gravitational pull of the Sun and Moon. However, wave power and tidal power are not fundamentally distinct and have significant cross-over in technology and implementation. Other forces can create currents, including breaking waves, wind, the Coriolis effect, cabbeling, and temperature and salinity differences.
As of 2023, wave power is not widely employed for commercial applications, after a long series of trial projects. Attempts to use this energy began in 1890 or earlier,[2] mainly due to its high power density. Just below the ocean's water surface the wave energy flow, in time-average, is typically five times denser than the wind energy flow 20 m above the sea surface, and 10 to 30 times denser than the solar energy flow.[3]
In 2000 the world's first commercial wave power device, the Islay LIMPET was installed on the coast of Islay in Scotland and connected to the UK national grid.[4] In 2008, the first experimental multi-generator wave farm was opened in Portugal at the Aguçadoura Wave Farm.[5] Both projects have since ended. For a list of other wave power stations see List of wave power stations.
Wave energy converters can be classified based on their working principle as either:[6][7]
oscillating water columns (with air turbine)
oscillating bodies (with hydroelectric motor, hydraulic turbine, linear electrical generator)
The first known patent to extract energy from ocean waves was in 1799, filed in Paris by Pierre-Simon Girard and his son.[8] An early device was constructed around 1910 by Bochaux-Praceique to power his house in Royan, France.[9] It appears that this was the first oscillating water-column type of wave-energy device.[10] From 1855 to 1973 there were 340 patents filed in the UK alone.[8]
Modern pursuit of wave energy was pioneered by Yoshio Masuda's 1940s experiments.[11] He tested various concepts, constructing hundreds of units used to power navigation lights. Among these was the concept of extracting power from the angular motion at the joints of an articulated raft, which Masuda proposed in the 1950s.[12]
Salter's 1974 invention became known as Salter's duck or nodding duck, officially the Edinburgh Duck. In small-scale tests, the Duck's curved cam-like body can stop 90% of wave motion and can convert 90% of that to electricity, giving 81% efficiency.[13] In the 1980s, several other first-generation prototypes were tested, but as oil prices ebbed, wave-energy funding shrank. Climate change later reenergized the field.[14][3]
The world's first wave energy test facility was established in Orkney, Scotland in 2003 to kick-start the development of a wave and tidal energy industry. The European Marine Energy Centre(EMEC) has supported the deployment of more wave and tidal energy devices than any other single site.[15] Subsequent to its establishment test facilities occurred also in many other countries around the world, providing services and infrastructure for device testing.[16]
The £10 million Saltire prize challenge was to be awarded to the first to be able to generate 100 GWh from wave power over a continuous two-year period by 2017 (about 5.7 MW average).[17] The prize was never awarded. A 2017 study by Strathclyde University and Imperial College focused on the failure to develop "market ready" wave energy devices – despite a UK government investment of over £200 million over 15 years.[18]
Public bodies have continued and in many countries stepped up the research and development funding for wave energy during the 2010s. This includes both EU, US and UK where the annual allocation has typically been in the range 5-50 million USD.[19][20][21][22][23] Combined with private funding, this has led to a large number of ongoing wave energy projects (see List of wave power projects).
Like most fluid motion, the interaction between ocean waves and energy converters is a high-order nonlinear phenomenon. It is described using the incompressible Navier-Stokes equationswhere is the fluid velocity, is the pressure, the density, the viscosity, and the net external force on each fluid particle (typically gravity). Under typical conditions, however, the movement of waves is described by Airy wave theory, which posits that
In situations relevant for energy harvesting from ocean waves these assumptions are usually valid.
Airy equations
The first condition implies that the motion can be described by a velocity potential:[24]which must satisfy the Laplace equation,In an ideal flow, the viscosity is negligible and the only external force acting on the fluid is the earth gravity . In those circumstances, the Navier-Stokes equations reduces to which integrates (spatially) to the Bernoulli conservation law:
Linear potential flow theory
When considering small amplitude waves and motions, the quadratic term can be neglected, giving the linear Bernoulli equation,and third Airy assumptions then implyThese constraints entirely determine sinusoidal wave solutions of the form where determines the wavenumber of the solution and and are determined by the boundary constraints (and ). Specifically,The surface elevation can then be simply derived as a plane wave progressing along the x-axis direction.
Consequences
Oscillatory motion is highest at the surface and diminishes exponentially with depth. However, for standing waves (clapotis) near a reflecting coast, wave energy is also present as pressure oscillations at great depth, producing microseisms.[1] Pressure fluctuations at greater depth are too small to be interesting for wave power conversion.
The behavior of Airy waves offers two interesting regimes: water deeper than half the wavelength, as is common in the sea and ocean, and shallow water, with wavelengths larger than about twenty times the water depth. Deep waves are dispersionful: Waves of long wavelengths propagate faster and tend to outpace those with shorter wavelengths. Deep-water group velocity is half the phase velocity. Shallow water waves are dispersionless: group velocity is equal to phase velocity, and wavetrains propagate undisturbed.[1][25][26]
The following table summarizes the behavior of waves in the various regimes:
Airy gravity waves on the surface of deep water, shallow water, or intermediate depth
In deep water where the water depth is larger than half the wavelength, the wave energy flux is[b]
with P the wave energy flux per unit of wave-crest length, Hm0 the significant wave height, Te the wave energy period, ρ the water density and g the acceleration by gravity. The above formula states that wave power is proportional to the wave energy period and to the square of the wave height. When the significant wave height is given in metres, and the wave period in seconds, the result is the wave power in kilowatts (kW) per metre of wavefront length.[29][30][31][32]
For example, consider moderate ocean swells, in deep water, a few km off a coastline, with a wave height of 3 m and a wave energy period of 8 s. Solving for power produces
or 36 kilowatts of power potential per meter of wave crest.
In major storms, the largest offshore sea states have significant wave height of about 15 meters and energy period of about 15 seconds. According to the above formula, such waves carry about 1.7 MW of power across each meter of wavefront.
An effective wave power device captures a significant portion of the wave energy flux. As a result, wave heights diminish in the region behind the device.
where E is the mean wave energy density per unit horizontal area (J/m2), the sum of kinetic and potential energy density per unit horizontal area. The potential energy density is equal to the kinetic energy,[1] both contributing half to the wave energy density E, as can be expected from the equipartition theorem.
The waves propagate on the surface, where crests travel with the phase velocity while the energy is transported horizontally with the group velocity. The mean transport rate of the wave energy through a vertical plane of unit width, parallel to a wave crest, is the energy flux (or wave power, not to be confused with the output produced by a device), and is equal to:[34][1]
with cg the group velocity (m/s).
Due to the dispersion relation for waves under gravity, the group velocity depends on the wavelength λ, or equivalently, on the wave periodT.
Wave height is determined by wind speed, the length of time the wind has been blowing, fetch (the distance over which the wind excites the waves) and by the bathymetry (which can focus or disperse the energy of the waves). A given wind speed has a matching practical limit over which time or distance do not increase wave size. At this limit the waves are said to be "fully developed". In general, larger waves are more powerful but wave power is also determined by wavelength, water density, water depth and acceleration of gravity.
This device floats on the surface, held in place by cables connected to the seabed. The point-absorber has a device width much smaller than the incoming wavelength λ. Energy is absorbed by radiating a wave with destructive interference to the incoming waves. Buoys use the swells' rise and fall to generate electricity directly via linear generators,[36] generators driven by mechanical linear-to-rotary converters,[37] or hydraulic pumps.[38] Energy extracted from waves may affect the shoreline, implying that sites should remain well offshore.[39]
One point absorber design tested at commercial scale by CorPower features a negative spring that improves performance and protects the buoy in very large waves. It also has an internal pneumatic cylinder that keeps the buoy at a fixed distance from the seabed regardless of the state of the tide. Under normal operating conditions, the buoy bobs up and down at double the wave amplitude by adjusting the phase of its movements. It rises with a slight delay from the wave, which allows it to extract more energy. The firm claimed a 300% increase (600 kW) in power generation compared to a buoy without phase adjustments in tests completed in 2024.[40]
Surface attenuator
These devices use multiple floating segments connected to one another. They are oriented perpendicular to incoming waves. A flexing motion is created by swells, and that motion drives hydraulic pumps to generate electricity. The Pelamis Wave Energy Converter is one of the more well-known attenuator concepts, although this is no longer being developed.[41]
Oscillating wave surge converter
These devices typically have one end fixed to a structure or the seabed while the other end is free to move. Energy is collected from the relative motion of the body compared to the fixed point. Converters often come in the form of floats, flaps, or membranes. Some designs incorporate parabolic reflectors to focus energy at the point of capture. These systems capture energy from the rise and fall of waves.[42]
Oscillating water column
Oscillating water column devices can be located onshore or offshore. Swells compress air in an internal chamber, forcing air through a turbine to create electricity.[43] Significant noise is produced as air flows through the turbines, potentially affecting nearby birds and marine organisms. Marine life could possibly become trapped or entangled within the air chamber.[39] It draws energy from the entire water column.[44]
Overtopping device
Overtopping devices are long structures that use wave velocity to fill a reservoir to a greater water level than the surrounding ocean. The potential energy in the reservoir height is captured with low-head turbines. Devices can be on- or offshore.
Submerged pressure differential
Submerged pressure differential based converters[45] use flexible (typically reinforced rubber) membranes to extract wave energy. These converters use the difference in pressure at different locations below a wave to produce a pressure difference within a closed power take-off hydraulic system. This pressure difference is usually used to produce flow, which drives a turbine and electrical generator. Submerged pressure differential converters typically use flexible membranes as the working surface between the water and the power take-off. Membranes are pliant and low mass, which can strengthen coupling with the wave's energy. Their pliancy allows large changes in the geometry of the working surface, which can be used to tune the converter for specific wave conditions and to protect it from excessive loads in extreme conditions.
A submerged converter may be positioned either on the seafloor or in midwater. In both cases, the converter is protected from water impact loads which can occur at the free surface. Wave loads also diminish in non-linear proportion to the distance below the free surface. This means that by optimizing depth, protection from extreme loads and access to wave energy can be balanced.
Floating in-air converters
Floating in-air converters potentially offer increased reliability because the device is located above the water, which also eases inspection and maintenance. Examples of different concepts of floating in-air converters include:
roll damping energy extraction systems with turbines in compartments containing sloshing water
horizontal axis pendulum systems
vertical axis pendulum systems
Submerged wave energy converters
In early 2024, a fully submerged wave energy converter using point absorber-type wave energy technology was approved in Spain.[46] The converter includes a buoy that is moored to the bottom and situated below the surface, out of sight of people and away from storm waves.[46]
Artificial reef accumulation near fixed installations
Potential disuption to roosting sites
The Tethys database provides access to scientific literature and general information on the potential environmental effects of ocean current energy.[47]
Potential
Wave energy's worldwide theoretical potential has been estimated to be greater than 2 TW.[48] Locations with the most potential for wave power include the western seaboard of Europe, the northern coast of the UK, and the Pacific coastlines of North and South America, Southern Africa, Australia, and New Zealand. The north and south temperate zones have the best sites for capturing wave power. The prevailing westerlies in these zones blow strongest in winter.
The National Renewable Energy Laboratory (NREL) estimated the theoretical wave energy potential for various countries. It estimated that the US' potential was equivalent to 1170 TWh per year or almost 1/3 of the country's electricity consumption.[49] The Alaska coastline accounted for ~50% of the total.
The technical and economical potential will be lower than the given values for the theoretical potential.[50][51]
Challenges
This section needs expansion with: what are the main technical difficulties?. You can help by adding to it. (February 2023)
Environmental impacts must be addressed.[31][52] Socio-economic challenges include the displacement of commercial and recreational fishermen, and may present navigation hazards.[53] Supporting infrastructure, such as grid connections, must be provided.[54] Commercial WECs have not always been successful. In 2019, for example, Seabased Industries AB in Sweden was liquidated due to "extensive challenges in recent years, both practical and financial".[55]
Current wave power generation technology is subject to many technical limitations.[56] These limitations stem from the complex and dynamic nature of ocean waves, which require robust and efficient technology to capture the energy. Challenges include designing and building wave energy devices that can withstand the corrosive effects of saltwater, harsh weather conditions, and extreme wave forces.[57] Additionally, optimizing the performance and efficiency of wave energy converters, such as oscillating water column (OWC) devices, point absorbers, and overtopping devices, requires overcoming engineering complexities related to the dynamic and variable nature of waves.[58] Furthermore, developing effective mooring and anchoring systems to keep wave energy devices in place in the harsh ocean environment, and developing reliable and efficient power take-off mechanisms to convert the captured wave energy into electricity, are also technical challenges in wave power generation.[59] As the wave energy dissipation by a submerged flexible mound breakwater is greater than that of a rigid submerged structure, greater wave energy dissipation is expected due to highly deformed shape of the structure.[60]
Wave farms
A wave farm (wave power farm or wave energy park) is a group of colocated wave energy devices. The devices interact hydrodynamically and electrically, according to the number of machines, spacing and layout, wave climate, coastal and benthic geometry, and control strategies. The design process is a multi-optimization problem seeking high power production, low costs and limited power fluctuations.[61] Nearshore wave farms have substantial impact on beach dynamics. For instance, wave farms significantly reduce erosion which demonstrates that this synergy between coastal protection and energy production enhances the economic viability of wave energy.[62] Additional research finds that wave farms located near lagoons can potentially provide effective coastal protection during maritime spatial planning.[63]
U.S. patent 1,930,958 — 1932 Wave Motor - Parsons Ocean Power Plant - Herring Cove Nova Scotia - March 1925. The world's first commercial plant to convert ocean wave energy into electrical power. Designer - Osborne Havelock Parsons - born in 1873 Petitcodiac, New Brunswick.
A UK-based company has developed a Waveline Magnet that can achieve a levelized cost of electricity of £0.01/kWh with minimal levels of maintenance.[65]
^For determining the group velocity the angular frequency ω is considered as a function of the wavenumber k, or equivalently, the period T as a function of the wavelength λ.
^The energy flux is with the group velocity,[28] The group velocity is , see the collapsed table "Properties of gravity waves on the surface of deep water, shallow water and at intermediate depth, according to linear wave theory" in the section "Wave energy and wave energy flux" below.
^Here, the factor for random waves is 1⁄16, as opposed to 1⁄8 for periodic waves – as explained hereafter. For a small-amplitude sinusoidal wave with wave amplitude the wave energy density per unit horizontal area is or using the wave height for sinusoidal waves. In terms of the variance of the surface elevation the energy density is . Turning to random waves, the last formulation of the wave energy equation in terms of is also valid (Holthuijsen, 2007, p. 40), due to Parseval's theorem. Further, the significant wave height is defined as , leading to the factor 1⁄16 in the wave energy density per unit horizontal area.
^Morris-Thomas, Michael T.; Irvin, Rohan J.; Thiagarajan, Krish P.; et al. (2007). "An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column". Journal of Offshore Mechanics and Arctic Engineering. 129 (4): 273–278. doi:10.1115/1.2426992.
^Folley, Matt (2016). Numerical modelling of wave energy converters : state-of-the-art techniques for single devices and arrays. London, UK: Academic Press. ISBN978-0-12-803211-4. OCLC952708484.
^R. G. Dean & R. A. Dalrymple (1991). Water wave mechanics for engineers and scientists. Advanced Series on Ocean Engineering. Vol. 2. World Scientific, Singapore. ISBN978-981-02-0420-4. See page 64–65.
^ abGoda, Y. (2000). Random Seas and Design of Maritime Structures. World Scientific. ISBN978-981-02-3256-6.
^Jafarzadeh, E., Kabiri-Samani, A., Mansourzadeh, S., & Bohluly, A. (2021). Experimental modeling of the interaction between waves and submerged flexible mound breakwaters. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 235(1), 127-141.
Marine Energy Projects Database A database that provides up-to-date information on marine energy deployments in the U.S. and around the world.
Tethys Database A database of information on potential environmental effects of marine energy and offshore wind energy development.
Tethys Engineering Database A database of information on technical design and engineering of marine energy devices.
Marine and Hydrokinetic Data Repository A database for all data collected by marine energy research and development projects funded by the U.S. Department of Energy.
Polish cardiologist and politician Łukasz SzumowskiMinister of HealthIn office9 January 2018 – 20 August 2020Prime MinisterMateusz MorawieckiPreceded byKonstanty RadziwiłłSucceeded byAdam Niedzielski Personal detailsBornŁukasz Jan Szumowski (1972-06-03) 3 June 1972 (age 51)Warsaw, PolandSpouse Anna Szumowska (m. 1997)Children4Alma materMedical University of Warsaw Łukasz Jan Szumowski (born 3 June 1972) is a Polish cardiologist who served as...
Questa voce o sezione sull'argomento Emilia-Romagna è ritenuta da controllare. Motivo: Questo sito non è ufficialmente un'area naturale protetta, perché non è presente nell'elenco ufficiale stilato dal Ministero dell'Ambiente. Il Template:Area protetta è da rimuovere? Partecipa alla discussione e/o correggi la voce. Segui i suggerimenti del progetto di riferimento. Oasi di PortoTipo di areaOasi Stati Italia Regioni Emilia-Romagna Province Ferrara ComuniPortomaggiore, ...
1971 studio album by Juan GabrielEl Alma Joven...Studio album by Juan GabrielReleased1971 (1971)Recorded1971GenreLatin popLanguageSpanishLabelRCA RecordsJuan Gabriel chronology El Alma Joven...(1971) El Alma Joven Vol.II(1972) El Alma Joven... (in English: The Young Soul) is the debut studio album by Mexican singer-songwriter and actor Juan Gabriel, released in 1971. The album featured Gabriel's debut single and first hit song No Tengo Dinero, which remains one of Gabriel's most ...
Học thuyết Phlogiston (thế kỷ 17) đã cố gắng tìm lý giải cho những quá trình oxy hóa, như lửa hay sự rỉ sét của kim loại. Thuyết phlogiston (có nguồn gốc từ tiếng Hi Lạp cổ phlogios, có nghĩa là sự cháy) là một lý thuyết khoa học đã lỗi thời, được Johann Joachim Becher đưa ra lần đầu tiên vào năm 1667, cho rằng ngoài những nguyên tố cổ điển của người Hi Lạp, có một nguyên tố bổ sung t
متحف اللوفر Musée du LouvreMusée du Louvre (بالفرنسية)[1]Louvre Museum (بالإنجليزية)[2] معلومات عامةنوع القائمة ... متحف فني[3] — متحف أثري[3] — متحف وطني[3] — مزار سياحي — شركة إنتاج[4] الافتتاح الرسمي 10 أغسطس 1793 الإدارة Service of the Museums of France (en) المالك وزارة الثقافة الفرنس...
Ана Соларі Ім'я при народженні ісп. Ana SolariНародилася 20 листопада 1957(1957-11-20)[1] (66 років) або 1956[2]Монтевідео, Уругвай[1]Країна УругвайДіяльність письменниця, журналістка, вчителька, музиканткаМова творів іспанська, німецька і англійськаНагор...
Olmaliq Ciudad OlmaliqLocalización de Olmaliq en UzbekistánCoordenadas 40°51′N 69°36′E / 40.85, 69.6Entidad Ciudad • País Uzbekistán • Provincia TaskentAltitud • Media 585 m s. n. m.Población (est 2010) • Total 113 026 hab.[1]Huso horario UTC+5Código postal 110103Prefijo telefónico 7161[2][editar datos en Wikidata] Olmaliq (en ruso: Алмалык, romanizado: Almalik) es u...
Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Topik artikel ini mungkin tidak memenuhi kriteria kelayakan umum. Harap penuhi kelayakan artikel dengan: menyertakan sumber-sumber tepercaya yang independen terhadap subjek dan sebaiknya hindari sumber-sumber trivial. Jika tidak dipenuhi, artikel ini ...
The Immortal Nicholas AuthorGlenn BeckCountryUnited StatesLanguageEnglishGenreFantasyPublisherMercury Radio ArtsPublication dateOctober 27, 2015Pages336ISBN978-1476798844 The Immortal Nicholas is an adventure/action/fantasy novel by Glenn Beck, published on October 27, 2015, by Mercury Radio Arts and Simon & Schuster. Upon its first week of release it was listed on the Amazon.com Best Sellers list.[1][2] Beck, a New York Times bestselling author and founder of TheBlaze and...
Giovanni Bellini (c. 1430 – 26 November 1516)[1] was a Venetian Renaissance painter, probably the best known of the Bellini family of Venetian painters. His father was Jacopo Bellini, his brother was Gentile Bellini (who was more highly regarded than Giovanni during his lifetime, although the reverse is true today), and his brother-in-law was Andrea Mantegna. He was considered to have revolutionized Venetian painting, moving it towards a more sensuous and colouristic style. Through ...
Chinese TV series or program SwordsmanPromotional posterChinese笑傲江湖Hanyu PinyinXiào Ào Jiāng Hú GenreWuxiaBased onThe Smiling, Proud Wandererby Louis ChaScreenplay byYu ZhengDirected byHu YijuanHuang JunwenCreative directorLi XianchangPresented byPu ShulinRen QuanYu ZhengWan KeZheng GangStarringWallace HuoJoe ChenYuan ShanshanChen XiaoYang RongTheme music composerTan XuanDong ZhenOpening themeFreedom by Wallace HuoEnding themeLove Me by Pu Ti and Yuan ShanshanComposerLiu ShaC...
I liga seria A 2004/2005 2003/2004 2005/2006 Szczegóły Państwo Polska Organizator PZPS Edycja LXIX Liczba zespołów 10 Termin 16.10.2004 – 28.04.2005 Zwycięzca Winiary Kalisz I liga seria A polska w piłce siatkowej kobiet 2004/2005 - 69. edycja rozgrywek o mistrzostwo polski w piłce siatkowej kobiet. Ostatni sezon, w którym rozgrywkami najwyższej klasy ligowej żeńskiej siatkówki zarządzał PZPS. System rozgrywek Etap I – dwurundowa faza zasadnicza, przeprowadzona w form...
Public policy school of Carleton University School of Public Policy and Administration at Carleton UniversityTypePublicEstablished1953Parent institutionCarleton UniversityAcademic affiliationCanadian Association of Programs in Public AdministrationDirectorGraeme AuldAcademic staff25Administrative staff6Postgraduates236LocationOttawa, Ontario, CanadaCampusUrbanWebsitehttps://carleton.ca/sppa/ The School of Public Policy and Administration at Carleton University (SPPA) is the public policy scho...
1947 film by John Brahm SingaporeTheatrical release posterDirected byJohn BrahmScreenplay bySeton I. MillerRobert ThoerenStory bySeton I. MillerProduced byJerry BreslerStarringFred MacMurrayAva Gardner Roland CulverCinematographyMaury GertsmanEdited byWilliam HornbeckMusic byDaniele AmfitheatrofColor processBlack and whiteProductioncompanyUniversal International PicturesDistributed byUniversal PicturesRelease date August 13, 1947 (1947-08-13) Running time79 minutesCountryUnited...
Alcide Legrand Nazionalità Francia Altezza 177 cm Peso 84 kg Lotta Specialità Lotta libera Categoria Pesi medi Società US Métro Paris Termine carriera 1997 Carriera Nazionale 10983-1997 Francia Palmarès Competizione Ori Argenti Bronzi Mondiali 0 0 1 Giochi del Mediterraneo 0 2 0 Per maggiori dettagli vedi qui Statistiche aggiornate al 28 dicembre 2021 Modifica dati su Wikidata · Manuale Alcide Legrand (Bergerac, 17 febbraio 1962) è un ex lottatore francese, specializzato...
Local Indian ritual Alagu Seva is a special ritual event of the Devanga people.[1] Deities used to wound themselves by holy sword (Katthi) by saying Theesukko Thaye, Thegadhuko Thaye, Tho parak, Thali parak. It is done by Devanga Men without any age difference. It is believed that their ancestors used to follow this method to invoke the deity Sri Ramalinga Chowdeshwari Amman . Following them, Nowadays these people are invoking Chowdeswari Amman by this method. Pandaram (Holy Turmeric ...
Springfield Área no incorporada SpringfieldUbicación en el condado de Tuolumne y en el estado de California Ubicación de California en EE. UU.Coordenadas 38°01′15″N 120°24′41″O / 38.020833333333, -120.41138888889Entidad Área no incorporada • País Estados Unidos • Estado California • Condado TuolumneAltitud • Media 627 m s. n. m.Huso horario Pacífico: UTC-8 • en verano UTC-7Código ZIP 95370[1]Código d...