Wind setup

Effect of wind setup during Hurricane Katrina in 2005

Wind setup, also known as wind effect or storm effect, refers to the rise in water level in seas, lakes, or other large bodies of water caused by winds pushing the water in a specific direction. As the wind moves across the water’s surface, it applies shear stress to the water, generating a wind-driven current. When this current encounters a shoreline, the water level increases due to the accumulation of water, which creates a hydrostatic counterforce that balances the shear force applied by the wind.[1][2]

During storms, wind setup forms part of the overall storm surge. For example, in the Netherlands, wind setup during a storm surge can raise water levels by as much as 3 metres above normal tidal levels. In tropical regions, such as the Caribbean, wind setup during cyclones can elevate water levels by up to 5 metres. This phenomenon becomes especially significant when water is funnelled into shallow or narrow areas, leading to higher storm surges.[3]

Examples of the effects of wind setup include Hurricanes Gamma and Delta in 2020, during which wind setup was a major factor when strong winds and atmospheric pressure drops caused higher-than-expected coastal flooding across the Yucatán Peninsula in Mexico.[4] Similarly, in California’s Suisun Marsh, wind setup has been show to be a significant factor affecting local water levels, with strong winds pushing water into levees, contributing to frequent breaches and flooding.[5]

Observation

Observation of wind setup in Vlissingen in 1953

In lakes, wind setup often leads to noticeable fluctuations in water levels. This effect is particularly clear in lakes with well-regulated water levels, such as the IJsselmeer, where the relationship between wind speed, water depth, and fetch length can be accurately measured and observed.[6]

At sea, however, wind setup is typically masked by other factors, such as tidal variations. To measure the wind setup effect in coastal areas, the (calculated) astronomical tide is subtracted from the observed water level. For instance, during the North Sea flood of 1953, the highest water level along the Dutch coast was recorded at 2.79 metres at the Vlissingen tidal station, while the highest wind setup—measuring 3.52 metres—was observed at Scheveningen.

The highest wind setup ever recorded in the Netherlands, reaching 3.63 metres, occurred in Dintelsas, Steenbergen during the 1953 flood. However, globally, tropical regions like the Gulf of Mexico and the Caribbean often experience even higher wind setups during hurricane events, underscoring the importance of this phenomenon in coastal and flood management strategies.[4]

Calculation of wind setup

Based on the equilibrium between the shear stress due to the wind on the water and the hydrostatic back pressure, the following equation is used:[7]

in which:

h = water depth
x = distance
u= wind speed
, Ippen[7] suggests = 3.3*10−6
= angle of the wind relative to the coast
g = acceleration of gravity
cw has a value between 0.8*10−3 and 3.0*10−3

Application at open coasts

For an open coast, the equation becomes:

in which

Δh = wind setup
F = fetch length, this is the distance the wind blows over the water

However, this formula is not always applicable, particularly when dealing with open coasts or varying water depths. In such cases, a more complex approach is needed, which involves solving the differential equation using a one- or two-dimensional grid. This method, combined with real-world data, is used in countries like the Netherlands to predict wind setup along the coast during potential storms.[8]

Application at (shallow) lakes and confined small-fetch areas

Graph showing result of using modified value κ=1.7*10-7 for the calculation of wind setup, after Feij (2015).[6]

To calculate the wind setup in a lake, the following solution for the differential equation is used:

In 1966 the Delta Works Committee recommended using a value of 3.8*10−6 for under Dutch conditions. However, an analysis of measurement data from the IJsselmeer between 2002 and 2013 led to a more reliable value for , specifically = 2.2*10−6.[6]

This study also found that the formula underestimated wind setup at higher wind speeds. As a result, it has been suggested to increase the exponent of the wind speed from 2 to 3 and to further adjust to =1.7*10−7. This modified formula can predict the wind setup on the IJsselmeer with an accuracy of approximately 15 centimetres.

For confined environments such as marshes or small fetches, a simplified empirical model for wind setup has been proposed by Algra et al (2023).[5] This model was designed to estimate wind setup in the Suisun Marsh, where fetch lengths are smaller and shallow water depth conditions apply. The equation is expressed as:

Where:

  • = wind setup (water level rise),
  • = constant (typically derived empirically),
  • = wind speed measured 10 metres above the water surface,
  • = gravitational constant,
  • = average water depth,
  • = fetch length,
  • = angle between wind direction and the fetch.

This equation assumes that the fetch is small and simplifies the wind setup process by making the wind setup linearly proportional to the square of the wind speed. In their 2023 analysis of Van Sickle Island, Algra et al. found this model effective for environments with limited fetch and shallow depth, where the more complex approaches used for open coasts are unnecessary. Unlike the more detailed differential equation formulations used for larger open coasts or lakes, the Van Sickle model provides a practical approximation for confined areas where wind setup may still be significant but where spatial constraints simplify the overall water movement dynamics.[5]

Note

Wind setup should not be mistaken for wave run-up, which refers to the height which a wave reaches on a slope, or wave setup which is the increase in water level caused by breaking waves.[9]

See also

References

  1. ^ Smith, S.D. (1988). "Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature". Journal of Geophysical Research: Oceans. 93 (C12): 15467–15472. Bibcode:1988JGR....9315467S. doi:10.1029/JC093iC12p15467. Retrieved 26 June 2023.
  2. ^ Garvine, R.W. (1985). "A simple model of estuarine subtidal fluctuations forced by local and remote wind stress". Journal of Geophysical Research: Oceans. 90 (C6): 11945–11948. Bibcode:1985JGR....9011945G. doi:10.1029/JC090iC06p11945. Retrieved 26 June 2023.
  3. ^ Verboom, G.K.; van Dijk, R.P.; deRonde, J.G. (1 November 1987). "Een model van het Europese Kontinentale Plat voor windopzet en waterkwaliteitsberekeningen" [A model of the European Continental Shelf for wind setup and water quality calculations]. Z0096 (in Dutch). Deltares (WL). Retrieved 26 June 2023.
  4. ^ a b Torres-Freyermuth, A.; Medellí, G.; Kurczyn, J.A.; Pacheco-Castro, R.; Arriaga, J.; Appendini, C.M.; Allende-Arandía, M.E.; Gómez, J.A.; Franklin, G.L.; Zavala-Hidalgo, J. (2022). "Hazard assessment and hydrodynamic, morphodynamic, and hydrological response to Hurricane Gamma and Hurricane Delta on the northern Yucatán Peninsula". Natural Hazards and Earth System Sciences. 22 (12): 4063–4085. Bibcode:2022NHESS..22.4063T. doi:10.5194/nhess-22-4063-2022.
  5. ^ a b c Algra, S.; Huijbregts, J.; Prins, S.; Terliden-Ruhl, L.; Lanzafame, R.C.; Pearson, S.G. (2023). Risk Analysis: Van Sickle Island (Multidisciplinary Project Report: Group MDP 350). Delft University of Technology. Retrieved 27 September 2024.
  6. ^ a b c Feij, C.C.L; Verhagen, H.J. (2015). Nauwkeurigheid van formules voor windopzet aan de hand van meetgegevens van het IJsselmeer [Accuracy of formulas for wind setup based on measurement data from the IJsselmeer] (Thesis) (in Dutch). TU Delft, department hydraulic engineering. doi:10.4121/uuid:4b0483fe-b258-4c1a-900f-8adb030bb42f. Retrieved 26 June 2023.
  7. ^ a b Ippen, Arthur T. (1966). Estuary and coastline hydrodynamics. McGraw Hill, New York. p. 245.
  8. ^ Walton, T.L.; Dean, R.G. (2009). "Landward limit of wind setup on beaches". Ocean Engineering. 36 (9–10): 763–766. Bibcode:2009OcEng..36..763W. doi:10.1016/j.oceaneng.2009.03.004. Retrieved 28 July 2024.
  9. ^ Choi, B.H.; Kim, K.O.; Yuk, J.H.; Lee, H.S. (2018). "Simulation of the 1953 storm surge in the North Sea". Ocean Dynamics. 68 (12): 1759–1777. Bibcode:2018OcDyn..68.1759C. doi:10.1007/s10236-018-1223-z. ISSN 1616-7341. Retrieved 28 July 2024.

Read other articles:

У этого термина существуют и другие значения, см. Карпаты (значения). Эта статья — о футбольном клубе, расформированном в 2021 году. О футбольном клубе, выступающем в чемпионате Украины см. Карпаты (футбольный клуб, Львов, 2020). Эту страницу предлагается объединить ...

 

Jasmin Handanovič Spartak tetap bertahan di kompetisi Eropa, 2017Informasi pribadiNama lengkap Jasmin Handanović[1]Tanggal lahir 28 Januari 1978 (umur 45)Tempat lahir Ljubljana, SFR YugoslaviaTinggi 1,96 m (6 ft 5 in)Posisi bermain GoalkeeperInformasi klubKlub saat ini MariborNomor 33Karier junior1993–1994 SvobodaKarier senior*Tahun Tim Tampil (Gol)1996–2001 Olimpija 11 (0)2001–2002 Triglav Kranj 8 (0)2002–2003 Zagorje 30 (0)2003–2004 Svoboda 26 (0)2004...

 

GhulamPoster teatrikal resmiSutradara Vikram Bhatt Produser Mukesh Bhatt Ditulis oleh Anjum Rajabali PemeranAamir KhanRani MukerjiDeepak TijoriSharat SaxenaPenata musikJatin-LalitSinematograferTejaPenyuntingWaman BhonsleDistributorVishesh FilmsTanggal rilis19 Juni 1998Durasi162 menitNegara India Bahasa Hindi Anggaran₹72 juta[1]Pendapatankotor₹242 juta[1] Ghulam (terjemahan: Budak) adalah sebuah film drama gangster Hindi India tahun 1998, garapan Vikram Bhatt, dan dib...

Oliver Bierhoff Informasi pribadiNama lengkap Oliver BierhoffTanggal lahir 1 Mei 1968 (umur 55)Tempat lahir Karlsruhe, Jerman BaratTinggi 1,91 m (6 ft 3 in)Posisi bermain penyerangKarier senior*Tahun Tim Tampil (Gol)1986–1988 Bayer Uerdingen 31 (4)1988–1989 Hamburger SV 34 (6)1989–1990 Borussia Mönchengladbach 8 (0)1990–1991 Austria Salzburg 33 (23)1991–1995 Ascoli 117 (48)1995–1998 Udinese 86 (57)1998–2001 AC Milan 91 (36)2001–2002 Monaco 18 (4)2002–200...

 

село Чурино рос. Чуриноерз. Чурино Країна  Росія Суб'єкт Російської Федерації Мордовія Муніципальний район Єльниківський район Поселення Акчеєвське Код ЗКАТУ: 89218805004 Код ЗКТМО: 89618405116 Основні дані Населення 124 особи (2010[1]) Поштовий індекс 431374 Географічні координат...

 

Dalam nama Spanyol ini, nama keluarganya adalah Lamarque. Libertad LamarqueLibertad Lamarque pada ca. 1950LahirLibertad Lamarque Bouza(1908-11-24)24 November 1908Rosario, ArgentinaMeninggal12 Desember 2000(2000-12-12) (umur 92)Mexico City, MeksikoKebangsaanArgentinaMeksikoPekerjaanPemeran, penyanyiTahun aktif1930–2000PenghargaanGolden Ariel Award 2000 Libertad Lamarque (pengucapan bahasa Spanyol: [liβeɾˈtað laˈmaɾke]; 24 November 1908 – 12 Desember...

NGC 3921 الكوكبة الدب الأكبر رمز الفهرس NGC 3921 (الفهرس العام الجديد)MCG+09-20-009 (فهرس المجرات الموروفولوجي)IRAS 11484+5521 (IRAS)PGC 37063 (فهرس المجرات الرئيسية)2MASX J11510686+5504433 (Two Micron All Sky Survey, Extended source catalogue)UGC 6823 (فهرس أوبسالا العام)Z 269-7 (فهرس المجرات وعناقيد المجرات)Z 268-95 (فهرس المجرات وعناقيد المجر...

 

هذا التصنيف مخصص لجمع مقالات البذور المتعلقة بصفحة موضوع عن معركة إسرائيلية. بإمكانك المساعدة في توسيع هذه المقالات وتطويرها. لإضافة مقالة إلى هذا التصنيف، استخدم {{بذرة معركة إسرائيلية}} بدلاً من {{بذرة}}. هذا التصنيف لا يظهر في صفحات أعضائه؛ حيث إنه مخصص لصيانة صفحات ويكيب...

 

Revolusi paraboloida. Keripik kentang Pringles. Contoh paraboloida hiperbolik. Paraboloida dalam geometri adalah permukaan kuadrat yang memiliki tepat satu sumbu simetri dan tidak ada pusat simetri. Istilah paraboloida berasal dari parabola, yang mengacu pada bagian kerucut yang memiliki sifat simetri yang serupa. Setiap bagian bidang paraboloida dari bidang paralel ke sumbu simetri adalah parabola. Paraboloida-nya adalah hiperbolik jika setiap bagian bidang lainnya adalah hiperbola atau dua ...

XI Регіон Айсен —  Регіон  — XI Región de Aisén Герб Прапор Столиця Кояїке Найбільше місто Кояїке Країна  Чилі Межує з: сусідні адмінодиниці X Регіон Лос-Лаґос, Регіон Магальянес і Чилійська Антарктика, Чубут, Санта-Крус ? Провінції 4 провінції Офіційна мо

 

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. أراضي زراعية في استراليا إدارة الأراضي هي إدارة استخدام وتنمية موارد الأراضي في البيئات الحضرية والريفية على حد سواء، وهذه الموارد تستخدم في الزراعة العضوية وإعادة تشجير الغ

 

Maria Oakey DewingLahirMaria Oakey(1845-10-27)27 Oktober 1845New YorkMeninggal13 Desember 1927(1927-12-13) (umur 82)New YorkKebangsaanAmerikaPendidikanCooper Union, Antique School of National Academy of Fine Arts, John La FargeSuami/istriThomas DewingPatron(s)Charles Lang Freer, Whitelaw Reid, John Gellatly Maria Oakey Dewing (27 Oktober 1845 – 13 Desember 1927) adalah seorang pelukis Amerika yang dikenal karena penggambarannya tentang bunga.[1] Karyanya terinspir...

Dominic Calvert-Lewin Calvert-Lewin, 2017Informasi pribadiNama lengkap Dominic Nathaniel Calvert-Lewin[1]Tanggal lahir 16 Maret 1997 (umur 26)[2]Tempat lahir Sheffield, InggrisTinggi 614 kaki (187 m)[3]Posisi bermain PenyerangInformasi klubKlub saat ini EvertonNomor 9Karier junior2005–2014 Sheffield UnitedKarier senior*Tahun Tim Tampil (Gol)2014–2016 Sheffield United 11 (0)2014–2015 → Stalybridge Celtic (pinjam) 5 (6)2015–2016 → Northampton Town (...

 

Japanese torpedo bomber B4M Role Torpedo bomberType of aircraft Manufacturer Mitsubishi Designer Hajime Matsuhara First flight August 1934 Primary user Imperial Japanese Navy Number built 2 Developed from Mitsubishi 3MT10 The Mitsubishi Ka-12 or B4M was a Japanese carrier-based torpedo bomber of 1934. Two prototypes were built by Mitsubishi for the Imperial Japanese Navy. A development of the company's 3MT10 of 1932, the design differed primarily in the use of a radial engine and metal w...

 

M. Chat on a Paris building, spring 2002 M. Chat in Sarajevo, Bosnia and Herzegovina M. Chat (also known as Monsieur Chat and Mr Chat) is the name of a graffiti cat that originally appeared in Orléans, France in 1997. The graffiti appeared most frequently on chimneys, but was also sighted in other places, such as train platforms and at political rallies. The artist was originally anonymous, but in 2007 Thoma Vuille was caught in the act of creating the cat.[1] The yellow cartoon cat ...

Toray Pan Pacific Open 1990, парний розряд Toray Pan Pacific Open 1990Переможець Джиджі Фернандес Елізабет СмайліФіналіст Джо-Анн Фолл Рейчел МакквілланРахунок фіналу 6-2, 6-2Дисципліни одиночний розряд парний розряд ← 1989 · Toray Pan Pacific Open · 1991 → Докладніше: Toray Pan Pacific Open 1990 В парн...

 

2021 single by Tom GrennanLittle Bit of LoveSingle by Tom Grennanfrom the album Evering Road Released8 January 2021 (2021-01-08)Length3:46LabelInsanitySongwriter(s) Dan Bryer Mike Needle Tom Grennan Producer(s) Dan Bryer Jamie Scott Lostboy Tom Grennan singles chronology Amen (2020) Little Bit of Love (2021) Let's Go Home Together (2021) Little Bit of Love is a song by British musician Tom Grennan. It was released as a digital download and for streaming on 8 January 2021 as the...

 

الحقيقة اسمها سالممعلومات عامةتاريخ الصدور 1994اللغة الأصلية العربية (مصرى)البلد مصر الطاقمالمخرج أحمد صقر البطولة يحيى الفخراني أحمد راتبتعديل - تعديل مصدري - تعديل ويكي بيانات الحقيقة اسمها سالم، فيلم تليفزيوني أنتج عام 1994 من بطولة يحيى الفخراني وآثار الحكيم ووداد حمدي و...

Branch of the Slabodka Yeshiva in Hebron, relocated afterward to Jerusalem The Hebron Yeshiva,Knesses Yisrael (Hebron) Hebron Yeshiva, also known as Yeshivas Hevron, or Knesses Yisroel, is a yeshiva (school for Talmudic study). It originated in 1924 when the roshei yeshiva (deans) and 150 students of the Slabodka Yeshiva, known colloquially as the mother of yeshivas, relocated to Hebron. Relocation of Slabodka Yeshiva to Palestine The Alter of Slabodka surrounded by students in Hebron. A 1924...

 

2022–23 Wright State Raiders men's basketballConferenceHorizon LeagueRecord18–15 (10–10 Horizon)Head coachScott Nagy (7th season)Associate head coachClint SargentAssistant coaches Dan Beré Travis Trice Home arenaNutter CenterSeasons← 2021–222023–24 → 2022–23 Horizon League men's basketball standings vte Conf Overall Team W   L   PCT W   L   PCT Youngstown State 15 – 5   .750 24 – 10   .706 Milwaukee 14...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!