Share to: share facebook share twitter share wa share telegram print page

Imaginary unit

The imaginary unit i in the complex plane: Real numbers are conventionally drawn on the horizontal axis, and imaginary numbers on the vertical axis.

The imaginary unit or unit imaginary number (i) is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.

Imaginary numbers are an important mathematical concept; they extend the real number system to the complex number system in which at least one root for every nonconstant polynomial exists (see Algebraic closure and Fundamental theorem of algebra). Here, the term "imaginary" is used because there is no real number having a negative square.

There are two complex square roots of −1: i and i, just as there are two complex square roots of every real number other than zero (which has one double square root).

In contexts in which use of the letter i is ambiguous or problematic, the letter j is sometimes used instead. For example, in electrical engineering and control systems engineering, the imaginary unit is normally denoted by j instead of i, because i is commonly used to denote electric current.[1]

Terminology

Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical. The name imaginary is generally credited to René Descartes, and Isaac Newton used the term as early as 1670.[2][3] The i notation was introduced by Leonhard Euler.[4]

A unit is an undivided whole, and unity or the unit number is the number one (1).

Definition

The powers of i
are cyclic:

The imaginary unit i is defined solely by the property that its square is −1:

With i defined this way, it follows directly from algebra that i and i are both square roots of −1.

Although the construction is called "imaginary", and although the concept of an imaginary number may be intuitively more difficult to grasp than that of a real number, the construction is valid from a mathematical standpoint. Real number operations can be extended to imaginary and complex numbers, by treating i as an unknown quantity while manipulating an expression (and using the definition to replace any occurrence of i2 with −1). Higher integral powers of i are thus

and so on, cycling through the four values 1, i, −1, and i. As with any non-zero real number, i0 = 1.

As a complex number, i can be represented in rectangular form as 0 + 1i, with a zero real component and a unit imaginary component. In polar form, i can be represented as 1 × eπi /2 (or just eπi /2), with an absolute value (or magnitude) of 1 and an argument (or angle) of radians. (Adding any integer multiple of 2π to this angle works as well.) In the complex plane, which is a special interpretation of a Cartesian plane, i is the point located one unit from the origin along the imaginary axis (which is orthogonal to the real axis).

i vs. −i

Being a quadratic polynomial with no multiple root, the defining equation x2 = −1 has two distinct solutions, which are equally valid and which happen to be additive and multiplicative inverses of each other. Although the two solutions are distinct numbers, their properties are indistinguishable; there is no property that one has that the other does not. One of these two solutions is labelled +i (or simply i) and the other is labelled i, though which is which is inherently ambiguous.

The only differences between +i and i arise from this labelling. For example, by convention +i is said to have an argument of and i is said to have an argument of related to the convention of labelling orientations in the Cartesian plane relative to the positive x-axis with positive angles turning anticlockwise in the direction of the positive y-axis. Despite the signs written with them, neither +i nor i is inherently positive or negative in the sense that real numbers are.[5]

A more formal expression of this indistinguishability of +i and i is that, although the complex field is unique (as an extension of the real numbers) up to isomorphism, it is not unique up to a unique isomorphism. That is, there are two field automorphisms of the complex numbers that keep each real number fixed, namely the identity and complex conjugation. For more on this general phenomenon, see Galois group.

Matrices

Using the concepts of matrices and matrix multiplication, complex numbers can be represented in linear algebra. The real unit 1 and imaginary unit i can be represented by any pair of matrices I and J satisfying I2 = I, IJ = JI = J, and J2 = −I. Then a complex number a + bi can be represented by the matrix aI + bJ, and all of the ordinary rules of complex arithmetic can be derived from the rules of matrix arithmetic.

The most common choice is to represent 1 and i by the 2 × 2 identity matrix I and the matrix J,

Then an arbitrary complex number a + bi can be represented by:

More generally, any real-valued 2 × 2 matrix with a trace of zero and a determinant of one squares to I, so could be chosen for J. Larger matrices could also be used, for example 1 could be represented by the 4 × 4 identity matrix and i could be represented by any of the Dirac matrices for spatial dimensions.

Root of x2 + 1

Polynomials (weighted sums of the powers of a variable) are a basic tool in algebra. Polynomials whose coefficients are real numbers form a ring, denoted an algebraic structure with addition and multiplication and sharing many properties with the ring of integers.

The polynomial has no real-number roots, but the set of all real-coefficient polynomials divisible by forms an ideal, and so there is a quotient ring This quotient ring is isomorphic to the complex numbers, and the variable expresses the imaginary unit.

Graphic representation

The complex numbers can be represented graphically by drawing the real number line as the horizontal axis and the imaginary numbers as the vertical axis of a Cartesian plane called the complex plane. In this representation, the numbers 1 and i are at the same distance from 0, with a right angle between them. Addition by a complex number corresponds to translation in the plane, while multiplication by a unit-magnitude complex number corresponds to rotation about the origin. Every similarity transformation of the plane can be represented by a complex-linear function

Geometric algebra

In the geometric algebra of the Euclidean plane, the geometric product or quotient of two arbitrary vectors is a sum of a scalar (real number) part and a bivector part. (A scalar is a quantity with no orientation, a vector is a quantity oriented like a line, and a bivector is a quantity oriented like a plane.) The square of any vector is a positive scalar, representing its length squared, while the square of any bivector is a negative scalar.

The quotient of a vector with itself is the scalar 1 = u/u, and when multiplied by any vector leaves it unchanged (the identity transformation). The quotient of any two perpendicular vectors of the same magnitude, J = u/v, which when multiplied rotates the divisor a quarter turn into the dividend, Jv = u, is a unit bivector which squares to −1, and can thus be taken as a representative of the imaginary unit. Any sum of a scalar and bivector can be multiplied by a vector to scale and rotate it, and the algebra of such sums is isomorphic to the algebra of complex numbers. In this interpretation points, vectors, and sums of scalars and bivectors are all distinct types of geometric objects.[6]

More generally, in the geometric algebra of any higher-dimensional Euclidean space, a unit bivector of any arbitrary planar orientation squares to −1, so can be taken to represent the imaginary unit i.

Proper use

The imaginary unit was historically written and still is in some modern works. However, great care needs to be taken when manipulating formulas involving radicals. The radical sign notation is reserved either for the principal square root function, which is defined for only real x ≥ 0, or for the principal branch of the complex square root function. Attempting to apply the calculation rules of the principal (real) square root function to manipulate the principal branch of the complex square root function can produce false results:[7]

Generally, the calculation rules and are guaranteed to be valid for real, positive values of x and y only.[8][9][10]

When x or y is real but negative, these problems can be avoided by writing and manipulating expressions like , rather than . For a more thorough discussion, see square root and branch point.

Properties

As a complex number, the imaginary unit follows all of the rules of complex arithmetic.

Imaginary integers and imaginary numbers

When the imaginary unit is repeatedly added or subtracted, the result is some integer times the imaginary unit, an imaginary integer; any such numbers can be added and the result is also an imaginary integer:

Thus, the imaginary unit is the generator of a group under addition, specifically an infinite cyclic group.

The imaginary unit can also be multiplied by any arbitrary real number to form an imaginary number. These numbers can be pictured on a number line, the imaginary axis, which as part of the complex plane is typically drawn with a vertical orientation, perpendicular to the real axis which is drawn horizontally.

Gaussian integers

Integer sums of the real unit 1 and the imaginary unit i form a square lattice in the complex plane called the Gaussian integers. The sum, difference, or product of Gaussian integers is also a Gaussian integer:

Quarter-turn rotation

When multiplied by the imaginary unit i, any arbitrary complex number in the complex plane is rotated by a quarter turn ( radians or 90°) anticlockwise. When multiplied by i, any arbitrary complex number is rotated by a quarter turn clockwise. In polar form:

In rectangular form,

Integer powers

The powers of i repeat in a cycle expressible with the following pattern, where n is any integer:

Thus, under multiplication, i is a generator of a cyclic group of order 4, a discrete subgroup of the continuous circle group of the unit complex numbers under multiplication.

Written as a special case of Euler's formula for an integer n,

With a careful choice of branch cuts and principal values, this last equation can also apply to arbitrary complex values of n, including cases like n = i.[citation needed]

Roots

The two square roots of i in the complex plane

Just like all nonzero complex numbers, has two distinct square roots which are additive inverses. In polar form, they are

In rectangular form, they are[a]

Squaring either expression yields

The three cube roots of i in the complex plane

The three cube roots of i are[12]

For a general positive integer n, the n-th roots of i are, for k = 0, 1, ..., n − 1,

The value associated with k = 0 is the principal n-th root of i. The set of roots equals the corresponding set of roots of unity rotated by the principal n-th root of i. These are the vertices of a regular polygon inscribed within the complex unit circle.

Exponential and logarithm

The complex exponential function relates complex addition in the domain to complex multiplication in the codomain. Real values in the domain represent scaling in the codomain (multiplication by a real scalar) with 1 representing multiplication by e, while imaginary values in the domain represent rotation in the codomain (multiplication by a unit complex number) with i representing a rotation by 1 radian. The complex exponential is thus a periodic function in the imaginary direction, with period 2πi and image 1 at points 2kπi for all integers k, a real multiple of the lattice of imaginary integers.

The complex exponential can be broken into even and odd components, the hyperbolic functions cosh and sinh or the trigonometric functions cos and sin:

Euler's formula decomposes the exponential of an imaginary number representing a rotation:

The quotient coth z = cosh z / sinh z, with appropriate scaling, can be represented as an infinite partial fraction decomposition as the sum of reciprocal functions translated by imaginary integers:[13]

Other functions based on the complex exponential are well-defined with imaginary inputs. For example, a number raised to the ni power is:

Because the exponential is periodic, its inverse the complex logarithm is a multi-valued function, with each complex number in the domain corresponding to multiple values in the codomain, separated from each-other by any integer multiple of 2πi. One way of obtaining a single-valued function is to treat the codomain as a cylinder, with complex values separated by any integer multiple of 2πi treated as the same value; another is to take the domain to be a Riemann surface consisting of multiple copies of the complex plane stitched together along the negative real axis as a branch cut, with each branch in the domain corresponding to one infinite strip in the codomain.[14] Functions depending on the complex logarithm therefore depend on careful choice of branch to define and evaluate clearly.

For example, if one chooses any branch where then when x is a positive real number,

Factorial

The factorial of the imaginary unit i is most often given in terms of the gamma function evaluated at 1 + i:[15]

The magnitude and argument of this number are:[16]

See also

Notes

  1. ^ To find such a number, one can solve the equation (x + iy)2 = i where x and y are real parameters to be determined, or equivalently x2 + 2ixy - y2 = i. Because the real and imaginary parts are always separate, we regroup the terms, x2 - y2 + 2ixy = 0 + i. By equating coefficients, separating the real part and imaginary part, we have a system of two equations:
    Substituting into the first equation, we get Because x is a real number, this equation has two real solutions for x
    and . Substituting either of these results into the equation 2xy = 1 in turn, we will get the corresponding result for y. Thus, the square roots of i are the numbers and .[11]

References

  1. ^ Stubbings, George Wilfred (1945). Elementary vectors for electrical engineers. London: I. Pitman. p. 69.
    Boas, Mary L. (2006). Mathematical Methods in the Physical Sciences (3rd ed.). New York [u.a.]: Wiley. p. 49. ISBN 0-471-19826-9.
  2. ^ Silver, Daniel S. (November–December 2017). "The New Language of Mathematics". American Scientist. 105 (6): 364–371. doi:10.1511/2017.105.6.364.
  3. ^ "imaginary number". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  4. ^ Boyer, Carl B.; Merzbach, Uta C. (1991). A History of Mathematics. John Wiley & Sons. pp. 439–445. ISBN 978-0-471-54397-8.
  5. ^ Doxiadēs, Apostolos K.; Mazur, Barry (2012). Circles Disturbed: The interplay of mathematics and narrative (illustrated ed.). Princeton University Press. p. 225. ISBN 978-0-691-14904-2 – via Google Books.
  6. ^ The interpretation of the imaginary unit as the ratio of two perpendicular vectors was proposed by Hermann Grassmann in the foreword to his Ausdehnungslehre of 1844; later William Clifford realized that this ratio could be interpreted as a bivector.
    Hestenes, David (1996). "Grassmann's Vision" (PDF). In Schubring, G. (ed.). Hermann Günther Graßmann (1809–1877). Springer. doi:10.1007/978-94-015-8753-2_20.
  7. ^ Bunch, Bryan (2012). Mathematical Fallacies and Paradoxes (illustrated ed.). Courier Corporation. p. 31-34. ISBN 978-0-486-13793-3 – via Google Books.
  8. ^ Kramer, Arthur (2012). Math for Electricity & Electronics (4th ed.). Cengage Learning. p. 81. ISBN 978-1-133-70753-0 – via Google Books.
  9. ^ Picciotto, Henri; Wah, Anita (1994). Algebra: Themes, tools, concepts (Teachers' ed.). Henri Picciotto. p. 424. ISBN 978-1-56107-252-1 – via Google Books.
  10. ^ Nahin, Paul J. (2010). An Imaginary Tale: The story of "i" [the square root of minus one]. Princeton University Press. p. 12. ISBN 978-1-4008-3029-9 – via Google Books.
  11. ^ "What is the square root of i ?". University of Toronto Mathematics Network. Retrieved 26 March 2007.
  12. ^ Zill, Dennis G.; Shanahan, Patrick D. (2003). A first course in complex analysis with applications. Boston: Jones and Bartlett. pp. 24–25. ISBN 0-7637-1437-2. OCLC 50495529.
  13. ^ Euler expressed the partial fraction decomposition of the trigonometric cotangent as
    Varadarajan, V. S. (2007). "Euler and his Work on Infinite Series". Bulletin of the American Mathematical Society. New Series. 44 (4): 515–539. doi:10.1090/S0273-0979-07-01175-5.
  14. ^ Gbur, Greg (2011). Mathematical Methods for Optical Physics and Engineering. Cambridge University Press. pp. 278–284. ISBN 978-0-511-91510-9.
  15. ^ Ivan, M.; Thornber, N.; Kouba, O.; Constales, D. (2013). "Arggh! Eye factorial . . . Arg(i!)". American Mathematical Monthly. 120: 662–665. doi:10.4169/amer.math.monthly.120.07.660. S2CID 24405635.
    Sloane, N. J. A. (ed.). "Decimal expansion of the real part of i!", Sequence A212877; and "Decimal expansion of the negated imaginary part of i!", Sequence A212878. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^ Sloane, N. J. A. (ed.). "Decimal expansion of the absolute value of i!", Sequence A212879; and "Decimal expansion of the negated argument of i!", Sequence A212880. The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

Further reading

External links

Read other information related to :Imaginary unit/

Imaginary Imaginary friend Imaginary number Imaginary (sociology) The Imaginary (psychoanalysis) Imaginary Friend List of Foster's Home for Imaginary Friends characters Imaginary unit Foster's Home for Imaginary Friends The Imaginary The Imaginary (novel) Imaginary Numbers (EP) Quater-imaginary base Imaginary Sonicscape Book of Imaginary Beings Imaginary element What Chaos Is Imaginary Imaginary line Three Imaginary Boys Imaginary Diseases List of Foster's Home for Imaginary Friends episodes Imaginary Enemy The Imaginary (short story) The 2nd Imaginary Symphony for Cloudmaking Imaginary Playma…

te The Imaginary Invalid (disambiguation) Imaginary Friend (film) 1st Imaginary Symphony for Nomad Imaginary Landscape No. 1 Imaginary Landscape No. 2 (March No. 1) Imaginary Worlds: The Art of Fantasy Imaginary Friends (play) Imaginary Friend (novel) Imaginary Friends (short story) Imaginary voyage Imaginary Landscape No. 4 (March No. 2) Theme for an Imaginary Western Imaginary Friend (Th' Faith Healers album) The Imaginary (film) Totally imaginary number field Imaginary Friend (Star Trek: The Next Generation) Imaginary (film) The Imaginary (Sartre) Imaginary Bitches Imaginary (exhibition) List of awards and nominations received by Foster's Home for Imaginary Friends Imaginary Cuba Imaginary Witness Imaginary Monsters Imaginary Cities Imaginary Larry An Imaginary Country Imaginary Day Imaginary Places Imaginary Homelands Dancing for the Death of an Imaginary Enemy Imaginary Man Imaginary Voyage Imaginary Life Imaginary Third Imaginary Cat Time, Real and Imaginary Imaginary Heroes Imaginary Mary Imaginary Force Imaginary Landscape No. 3 Imaginary audience Imaginary Crimes Imaginary time Imaginary Johnny Imaginary Cities (album) Everything Wrong Is Imaginary Imaginary Landscape Nega

Read other articles:

Questa voce o sezione sull'argomento Africa non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Questa voce sull'argomento Africa è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Organizzazione dell'unità africanaI paesi me…

System map Shenzhen Metro is the metro system that serves the city of Shenzhen in Guangdong Province of the People's Republic of China. It is operated by the state-owned Shenzhen Metro Group (SZMC) except Line 4 which is run by MTR Corporation (Shenzhen). It was the seventh metro system to be built in mainland China; and having delivered 1297 million rides in 2016, it is one of the busiest metro systems in the world. The current Shenzhen Metro system consists of fifteen lines: Line 1: Luohu – …

PastThe sculpture in 2010ArtistRobert Ingersoll AitkenYear1935 (1935)TypeSculptureLocationWashington, D.C., United StatesCoordinates38°53′36″N 77°01′24″W / 38.89323°N 77.02320°W / 38.89323; -77.02320 Past is a 1935 outdoor sculpture by Robert Ingersoll Aitken, located in front of the National Archives Building in Washington, D.C., in the United States. John Russell Pope served as the sculpture's architect and Edward H. Ratti served as its carver. The scul…

San Felipe Plaats in de Verenigde Staten Vlag van Verenigde Staten Locatie van San Felipe in Texas Locatie van Texas in de VS Situering County Austin County Type plaats Town Staat Texas Coördinaten 29° 48′ NB, 96° 6′ WL Algemeen Oppervlakte 21,7 km² - land 21 km² - water 0,7 km² Inwoners (2006) 960 Hoogte 45 m Overig ZIP-code(s) 77473 FIPS-code 65372 Portaal    Verenigde Staten San Felipe is een plaats (town) in de Amerikaanse staat Texas, en valt bestuurlijk gezien o…

Elżbieta Gacek Data i miejsce urodzenia 6 lipca 1938 Wąchock Członek Rady Państwa Okres od 6 listopada 1985 do 17 czerwca 1988 Przynależność polityczna Polska Zjednoczona Partia Robotnicza Wicemarszałek Sejmu IX kadencji (PRL) Okres od 17 czerwca 1988 do 3 czerwca 1989 Przynależność polityczna Polska Zjednoczona Partia Robotnicza Odznaczenia Multimedia w Wikimedia Commons Elżbieta Łucja Gacek (ur. 6 lipca 1938 w Wąchocku) – polska prawniczka, poetka i polityk, w latach 1988

Falkland Islands Government Air Service Britten-Norman Islander en el Aeropuerto de Puerto Argentino/StanleyFundación 1948Aeropuerto principal Aeropuerto de Puerto Argentino/Stanley, Puerto Argentino/Stanley,  Islas MalvinasFlota 5Destinos 29Director ejecutivo Shaun Minto[1]​Página web http://www.fig.gov.fk/figas/[editar datos en Wikidata] El Servicio Aéreo del Gobierno de las Islas Malvinas (oficialmente y en inglés: Falkland Islands Government Air Service, también con…

Avanço Gorlice-Tarnów e retirada russa. A ofensiva Gorlice-Tarnów durante a Primeira Guerra Mundial foi inicialmente concebida como uma pequena ofensiva alemã para aliviar a pressão russa sobre os austro-húngaros ao sul na Frente Oriental, mas resultou no principal esforço ofensivo das Potências Centrais de 1915, causando o total colapso das linhas russas e sua retirada para dentro da Rússia. A série contínua de ações durou a maior parte da temporada de campanha de 1915, começando …

Pilgerwege nach Santiago de Compostela: Camino Francés und die Routen Nordspaniens UNESCO-Welterbe Die Jakobsmuschel und der gelbe Pfeil sind die typischen Orientierungshilfen entlang des Weges Vertragsstaat(en): Frankreich FrankreichSpanien Spanien Typ: Kultur Kriterien: ii, iv, vi Referenz-Nr.: 669 UNESCO-Region: Europa und Nordamerika Geschichte der Einschreibung Einschreibung: 1993  (Sitzung 17) Das Eiserne Kreuz (Cruz de Ferro) vor Ponferrada, an dem viele Pilger einen …

Terminal SritanjungTerminal Penumpang Tipe AKode: (STJ)Nama lain • Terminal Ketapang • Terminal Tanjungwangi • Terminal KapuranLokasiJalan Raya Situbondo, Lingkungan Krajan, Kelurahan Bulusan, Kecamatan Kalipuro, Kabupaten Banyuwangi, Provinsi Jawa Timur, Kodepos 68455 IndonesiaKoordinat8°07′06″S 114°23′54″E / 8.118311°S 114.398344°E / -8.118311; 114.398344Koordinat: 8°07′06″S 114°23′54″E / 8.118311°S 114.39…

У Вікіпедії є статті про інших людей з таким ім'ям: Прокл.Проклгрец. Πρόκλος Основні відомостіНародження 390Країна:  Візантійська імперіяКонфесія: православ'я Константинопольського патріархатуСмерть: 446(0446) КонстантинопольПраці й досягненняРід діяльності: священнослуж…

PatmosΠάτμος Kastil Patmos Letak Koordinat 37°19′N 26°30′E / 37.317°N 26.500°E / 37.317; 26.500Koordinat: 37°19′N 26°30′E / 37.317°N 26.500°E / 37.317; 26.500 Zona waktu: EET/EEST (UTC+2/3) Ketinggian (min-max): 0 - 269 m (0 - 883 ft) Pemerintah Negara: Yunani Periferal: South Aegean Statistik penduduk (pada 2001[1]) Kotamadya  - Jumlah penduduk: 3.044  - Luas: 34,…

English actress (1878–1975) Ethel GriffiesGriffies in Jane Eyre (1943)BornEthel Woods(1878-04-26)26 April 1878Sheffield, West Riding of Yorkshire, EnglandDied9 September 1975(1975-09-09) (aged 97)London, EnglandOccupationActressYears active1881–1967Spouses Walter Beaumont ​ ​(m. 1900; died 1910)​ Edward Cooper ​ ​(m. 1917; died 1956)​ Ethel Griffies (born Ethel Woods; 26 April 1878 – 9…

Electronic voting systems company Dominion Voting Systems CorporationTypePrivateIndustryElectronic voting hardwareFounded2002; 21 years ago (2002)FoundersJohn PoulosJames HooverHeadquartersToronto, Ontario, CanadaDenver, Colorado, U.S.Key peopleJohn Poulos (CEO)OwnersStaple Street Capital (76%)John Poulos (12%)PennantPark Investment[1]SubsidiariesPremier Election SolutionsSequoia Voting SystemsWebsitedominionvoting.com Dominion Voting Systems Corporation is an American&…

Men's 400 metre individual medleyat the Games of the XXXI OlympiadVenueOlympic Aquatics StadiumDates6 August 2016 (heats & final)Competitors27 from 20 nationsWinning time4:06.05 ASMedalists Kosuke Hagino  Japan Chase Kalisz  United States Daiya Seto  Japan← 20122020 → Swimming at the2016 Summer OlympicsQualificationFreestyle50 mmenwomen100 mmenwomen200 mmenwomen400 mmenwomen800 mwomen1500 mmenBackstroke100 mmenwomen200 mmenwomenBreaststroke100 m…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. SMA Negeri 6 MakassarInformasiJurusan atau peminatanIPA dan IPSRentang kelasX, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum Tingkat Satuan PendidikanAlamatLokasiJl. Ir. Sutami, Makassar, Sulawesi SelatanMoto SMA Negeri (SMAN) 6 Makassar, merupakan sal…

French writer (born 1973) Franck Thilliez (2009) Franck Thilliez (born 15 October 1973 in Annecy) is a French writer.[1] Thilliez was a computer engineer for a decade before he began writing.[2] His book La Chambre des morts was made into a film. Selected works La Chambre des morts (French Edition) (2005) Deuils De Miel (French Edition) (2010) La Memoire Fantome (French Edition) (2010) GATACA (Édition de Noyelles) (2011) Syndrome E: A Thriller (Viking Press, 2012) Bred to Kill: …

Zone in Amhara Region of Ethiopia Zone in Amhara Region, EthiopiaNorth Wollo ሰሜን ወሎZoneChurch of Saint George of Lalibela also found in this zone FlagCountryEthiopiaRegionAmhara RegionLargest cityWoldiyaArea[1] • Total12,172.50 km2 (4,699.83 sq mi)Population (2007) • Total1,500,303 • Density120/km2 (320/sq mi) Map of the regions and zones of Ethiopia North Wollo (Amharic: ሰሜን ወሎ) also called Semien Wollo, is…

Halaman ini memuat daftar paroki di Keuskupan Tanjungkarang. Daftar ini tidak dimaksudkan sebagai suatu daftar yang lengkap atau selalu terbarui. Jika Anda melihat artikel yang seharusnya tercantum di sini, silakan sunting halaman ini dan tambahkan pranala ke artikel tersebut. Gunakan perubahan terkait untuk melihat perubahan terbaru dari artikel-artikel yang tercantum pada halaman ini.[1][2] Daftar KatedralLidwinaKeluarga KudusGregoriusKristoforusPius XUP PaulusPetrusYohanesKaba…

Đây là một tên người Nhật; trong tiếng Nhật họ và tên được viết theo thứ tự Á Đông (họ trước tên sau): họ là Nishino. Nishino Akira西野 朗 Nishino trên cương vị huấn luyện viên trưởng đội tuyển Nhật Bản tại World Cup 2018Thông tin cá nhânNgày sinh 7 tháng 4 năm 1955 (68 tuổi)Nơi sinh Saitama, Saitama, Nhật BảnChiều cao 1,82 mVị trí Tiền vệSự nghiệp cầu thủ trẻ1974–1977 Đại học Wase…

This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Allameh Mohaddes Nouri University – news · newspapers · books · scholar · JSTOR (June 2014) (Learn how and when to remove this template message) Allameh Mohaddes Nouri Universityدانشگاه علامه محدث نوری Dāneshgāh-e Allameh Mohaddes-e NouriAllameh Mohaddes Nouri University's coat of armsTy…

Kembali kehalaman sebelumnya