Even and odd functions

The sine function and all of its Taylor polynomials are odd functions.
The cosine function and all of its Taylor polynomials are even functions.

In mathematics, an even function is a real function such that for every in its domain. Similarly, an odd function is a function such that for every in its domain.

They are named for the parity of the powers of the power functions which satisfy each condition: the function is even if n is an even integer, and it is odd if n is an odd integer.

Even functions are those real functions whose graph is self-symmetric with respect to the y-axis, and odd functions are those whose graph is self-symmetric with respect to the origin.

If the domain of a real function is self-symmetric with respect to the origin, then the function can be uniquely decomposed as the sum of an even function and an odd function.

Definition and examples

Evenness and oddness are generally considered for real functions, that is real-valued functions of a real variable. However, the concepts may be more generally defined for functions whose domain and codomain both have a notion of additive inverse. This includes abelian groups, all rings, all fields, and all vector spaces. Thus, for example, a real function could be odd or even (or neither), as could a complex-valued function of a vector variable, and so on.

The given examples are real functions, to illustrate the symmetry of their graphs.

Even functions

is an example of an even function.

A real function f is even if, for every x in its domain, x is also in its domain and[1]: p. 11  or equivalently

Geometrically, the graph of an even function is symmetric with respect to the y-axis, meaning that its graph remains unchanged after reflection about the y-axis.

Examples of even functions are:

  • The absolute value
  • cosine
  • hyperbolic cosine
  • Gaussian function

Odd functions

is an example of an odd function.

A real function f is odd if, for every x in its domain, x is also in its domain and[1]: p. 72  or equivalently

Geometrically, the graph of an odd function has rotational symmetry with respect to the origin, meaning that its graph remains unchanged after rotation of 180 degrees about the origin.

If is in the domain of an odd function , then .

Examples of odd functions are:

  • The sign function
  • The identity function
  • sine
  • hyperbolic sine
  • The error function
is neither even nor odd.

Basic properties

Uniqueness

  • If a function is both even and odd, it is equal to 0 everywhere it is defined.
  • If a function is odd, the absolute value of that function is an even function.

Addition and subtraction

  • The sum of two even functions is even.
  • The sum of two odd functions is odd.
  • The difference between two odd functions is odd.
  • The difference between two even functions is even.
  • The sum of an even and odd function is not even or odd, unless one of the functions is equal to zero over the given domain.

Multiplication and division

  • The product of two even functions is an even function.
    • That implies that product of any number of even functions is an even function as well.
  • The product of two odd functions is an even function.
  • The product of an even function and an odd function is an odd function.
  • The quotient of two even functions is an even function.
  • The quotient of two odd functions is an even function.
  • The quotient of an even function and an odd function is an odd function.

Composition

  • The composition of two even functions is even.
  • The composition of two odd functions is odd.
  • The composition of an even function and an odd function is even.
  • The composition of any function with an even function is even (but not vice versa).

Even–odd decomposition

If a real function has a domain that is self-symmetric with respect to the origin, it may be uniquely decomposed as the sum of an even and an odd function, which are called respectively the even part (or the even component) and the odd part (or the odd component) of the function, and are defined by and

It is straightforward to verify that is even, is odd, and

This decomposition is unique since, if

where g is even and h is odd, then and since

For example, the hyperbolic cosine and the hyperbolic sine may be regarded as the even and odd parts of the exponential function, as the first one is an even function, the second one is odd, and

.

Fourier's sine and cosine transforms also perform even–odd decomposition by representing a function's odd part with sine waves (an odd function) and the function's even part with cosine waves (an even function).

Further algebraic properties

  • Any linear combination of even functions is even, and the even functions form a vector space over the reals. Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space over the reals. In fact, the vector space of all real functions is the direct sum of the subspaces of even and odd functions. This is a more abstract way of expressing the property in the preceding section.
    • The space of functions can be considered a graded algebra over the real numbers by this property, as well as some of those above.
  • The even functions form a commutative algebra over the reals. However, the odd functions do not form an algebra over the reals, as they are not closed under multiplication.

Analytic properties

A function's being odd or even does not imply differentiability, or even continuity. For example, the Dirichlet function is even, but is nowhere continuous.

In the following, properties involving derivatives, Fourier series, Taylor series are considered, and these concepts are thus supposed to be defined for the considered functions.

Basic analytic properties

  • The derivative of an even function is odd.
  • The derivative of an odd function is even.
  • The integral of an odd function from −A to +A is zero (where A is finite, and the function has no vertical asymptotes between −A and A). For an odd function that is integrable over a symmetric interval, e.g. , the result of the integral over that interval is zero; that is[2]
    .
  • The integral of an even function from −A to +A is twice the integral from 0 to +A (where A is finite, and the function has no vertical asymptotes between −A and A. This also holds true when A is infinite, but only if the integral converges); that is
    .

Series

Harmonics

In signal processing, harmonic distortion occurs when a sine wave signal is sent through a memory-less nonlinear system, that is, a system whose output at time t only depends on the input at time t and does not depend on the input at any previous times. Such a system is described by a response function . The type of harmonics produced depend on the response function f:[3]

  • When the response function is even, the resulting signal will consist of only even harmonics of the input sine wave;
    • The fundamental is also an odd harmonic, so will not be present.
    • A simple example is a full-wave rectifier.
    • The component represents the DC offset, due to the one-sided nature of even-symmetric transfer functions.
  • When it is odd, the resulting signal will consist of only odd harmonics of the input sine wave;
  • When it is asymmetric, the resulting signal may contain either even or odd harmonics;
    • Simple examples are a half-wave rectifier, and clipping in an asymmetrical class-A amplifier.

This does not hold true for more complex waveforms. A sawtooth wave contains both even and odd harmonics, for instance. After even-symmetric full-wave rectification, it becomes a triangle wave, which, other than the DC offset, contains only odd harmonics.

Generalizations

Multivariate functions

Even symmetry:

A function is called even symmetric if:

Odd symmetry:

A function is called odd symmetric if:

Complex-valued functions

The definitions for even and odd symmetry for complex-valued functions of a real argument are similar to the real case. In signal processing, a similar symmetry is sometimes considered, which involves complex conjugation.[4][5]

Conjugate symmetry:

A complex-valued function of a real argument is called conjugate symmetric if

A complex valued function is conjugate symmetric if and only if its real part is an even function and its imaginary part is an odd function.

A typical example of a conjugate symmetric function is the cis function

Conjugate antisymmetry:

A complex-valued function of a real argument is called conjugate antisymmetric if:

A complex valued function is conjugate antisymmetric if and only if its real part is an odd function and its imaginary part is an even function.

Finite length sequences

The definitions of odd and even symmetry are extended to N-point sequences (i.e. functions of the form ) as follows:[5]: p. 411 

Even symmetry:

A N-point sequence is called conjugate symmetric if

Such a sequence is often called a palindromic sequence; see also Palindromic polynomial.

Odd symmetry:

A N-point sequence is called conjugate antisymmetric if

Such a sequence is sometimes called an anti-palindromic sequence; see also Antipalindromic polynomial.

See also

Notes

  1. ^ a b Gel'Fand, I. M.; Glagoleva, E. G.; Shnol, E. E. (1990). Functions and Graphs. Birkhäuser. ISBN 0-8176-3532-7.
  2. ^ W., Weisstein, Eric. "Odd Function". mathworld.wolfram.com.{{cite web}}: CS1 maint: multiple names: authors list (link)
  3. ^ Berners, Dave (October 2005). "Ask the Doctors: Tube vs. Solid-State Harmonics". UA WebZine. Universal Audio. Retrieved 2016-09-22. To summarize, if the function f(x) is odd, a cosine input will produce no even harmonics. If the function f(x) is even, a cosine input will produce no odd harmonics (but may contain a DC component). If the function is neither odd nor even, all harmonics may be present in the output.
  4. ^ Oppenheim, Alan V.; Schafer, Ronald W.; Buck, John R. (1999). Discrete-time signal processing (2nd ed.). Upper Saddle River, N.J.: Prentice Hall. p. 55. ISBN 0-13-754920-2.
  5. ^ a b Proakis, John G.; Manolakis, Dimitri G. (1996), Digital Signal Processing: Principles, Algorithms and Applications (3 ed.), Upper Saddle River, NJ: Prentice-Hall International, ISBN 9780133942897, sAcfAQAAIAAJ

References

Read other articles:

محتوى المقاله دى محتاج تحديث. لو سمحت ساعد بتحديثه عشان يحتوى الاحداث الاخيره و يشمل المعلومات الموثوقه المتوفره. نادى الزمالك الاسم الرسمى (بالعربى: نادي الزمالك)  الاسماء السابقه قصر النيل (1911-1913) المختلط (1913-1941) نادى فاروق (1941-1952) نادى الزمالك (1952-الآن) اللقب القلعة البيضا

 

Soda GembiraSegelas soda gembiraSajianMinumanTempat asalIndonesiaDaerahNasionalSuhu penyajianDinginBahan utamaes batu, soda, susu kental manis, sirop Soda gembira adalah minuman yang terbuat dari soda, susu kental manis, sirop, dan es batu. Minuman ini sangat cocok di hidangkan di kala cuaca sedang panas. Bahan yang dipakai Adapun bahan atau isi dari minuman tersebut bervariasi berdasarkan kreativitas orang atau tempat makan dalam membuatnya. Bahan-bahan yang sering dipakai adalah: es batu ai...

 

У этого топонима есть и другие значения, см. Нагорена. ДеревняНагорена 58°36′17″ с. ш. 49°49′24″ в. д.HGЯO Страна  Россия Субъект Федерации Кировская область Муниципальный район Слободской Сельское поселение Шиховское История и география Высота центра 154 м Часовой

American businessman For other people named Robert Watson, see Robert Watson (disambiguation). Robert K. WatsonRob WatsonBornChicago, IllinoisNationalityAmericanEducationMaster of Business Administration (MBA), Master of Science (MS)OccupationEnvironmentalistEmployerThe ECON GroupKnown forFather of LEED Robert Rob Watson, is a market transformation expert, international leader in the green building movement and CEO and chief scientist of The ECON Group. He founded the LEED Green Building...

 

Götz von Boehmer Götz von Boehmer (* 2. September 1929 in Berlin-Dahlem; † 13. Oktober 2019 in Berlin-Tiergarten) war ein deutscher Jurist, Forstgutsbesitzer und Botschafter. Inhaltsverzeichnis 1 Leben und Wirken 2 Herkunft und Familie 3 Werke 4 Literatur und Quellen Leben und Wirken Grabstätte auf dem Luisenfriedhof III Götz von Boehmer lebte bis zum Einmarsch der Sowjets im Frühjahr 1945 mit seinen Eltern im Berliner Ortsteil Nikolassee, danach zog er nach Detmold, wo er 1949 das Abi...

 

Cet article est une ébauche concernant une fête et la Finlande. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Drapeau finlandais dressé à Helsinki. Les fêtes et jours fériés en Finlande sont établis par l'Eduskunta, le parlement du pays. Selon la loi, le pavillon finlandais doit être déployé sur les bâtiments publics certains jours comme le 28 février (jour de Kalevala également connu sous l'appel...

Дюрбе Джаніке Ханим Координати: 44°44′27″ пн. ш. 33°55′27″ сх. д. / 44.74083° пн. ш. 33.92417° сх. д. / 44.74083; 33.92417Тип споруди ТюрбеРозташування  Україна, Крим, БахчисарайПочаток будівництва 1437 рікСтан пам'ятка культурної спадщини України і об'є...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (أبريل 2019) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. ...

 

2023 professional wrestling video game 2023 video gameWWE 2K23Standard edition cover featuring John CenaDeveloper(s)Visual ConceptsPublisher(s)2KSeriesWWE 2KPlatform(s)PlayStation 4PlayStation 5WindowsXbox OneXbox Series X/SReleaseMarch 14, 2023Genre(s)SportsMode(s)Single-player, multiplayer WWE 2K23 is a 2023 professional wrestling sports video game developed by Visual Concepts and published by 2K.[1] It is the twenty-third overall installment of the video game series based on WWE, t...

Brygada Rezerwowa Kawalerii Wołkowysk Historia Państwo  Polska Dowódcy Pierwszy płk Edmund Heldut-Tarnasiewicz Organizacja Rodzaj sił zbrojnych Wojska lądowe Rodzaj wojsk Jazda Brygada Rezerwowa Kawalerii „Wołkowysk” – wielka jednostka kawalerii Wojska Polskiego, improwizowana w trakcie kampanii wrześniowej 1939, w garnizonie Wołkowysk. Mobilizacja W rejonach Białegostoku i Wołkowyska koncentrowało się zgrupowanie ośrodków zapasowych Suwalskiej i Podlaskiej Brygady K...

 

2011 single by Coldplay Every Teardrop Is a WaterfallSingle by Coldplayfrom the album Mylo Xyloto B-side Major Minus Moving to Mars Released3 June 2011 (2011-06-03)GenreArena rock[1]Length 4:01 (album version) 4:03 (single version) LabelParlophoneSongwriter(s) Peter Allen Adrienne Anderson Guy Berryman Jonny Buckland Harry Castioni[2][3] Will Champion Alex Christensen[2][3] Brian Eno[2][3] B Lagonda[2][3] C...

 

Australian tennis venue Kooyong StadiumCentre Court in January 2014Location489 Glenferrie RoadKooyong, VictoriaCoordinates37°50′18″S 145°01′55″E / 37.83833°S 145.03194°E / -37.83833; 145.03194OwnerKooyong Lawn Tennis ClubCapacity5,000SurfacePlexicushionConstructionOpened1927Renovated1934[1]TenantsKooyong ClassicAustralian Open (1972–1987)Websitewww.kooyong.com.au Exterior grandstand showing iconic lettering and broadcast boxes Kooyong Stadium, at ...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) توماس ر. مارتن معلومات شخصية الميلاد سنة 1947 (العمر 75–76 سنة)  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة هارفاردجامعة برنستون  المه...

 

ワイドレシーバーのポジション例 パスをキャッチするWRカルビン・ジョンソン パスを取った後に走るマイク・エバンス ワイドレシーバー (WR)は、アメリカンフットボール、カナディアンフットボールの攻撃のポジションである。プレー開始時、通常はチームの中心から離れたサイドライン際に位置する。フィールド上ではコーナーバックやランニングバックと並んで、最

 

This article is about the village in Vlorë County. For the village in Korçë County, see Qendër Ersekë. Municipality in Vlorë, AlbaniaSelenicë SelenitsãMunicipalityThe city and the mines from the north EmblemSelenicëCoordinates: 40°32′N 19°38′E / 40.533°N 19.633°E / 40.533; 19.633Country AlbaniaCountyVlorëGovernment • MayorNertil Bellaj (PS)Area • Municipality561.52 km2 (216.80 sq mi)Population (2011)...

Kornet (Rusia: Корнет; Inggris: Cornet) adalah anti-tank Rusia dipandu rudal (ATGM). Hal ini dimaksudkan untuk berurusan dengan tank tempur utama dan untuk terlibat helikopter terbang lambat dan rendah, tetapi tidak dimaksudkan untuk sepenuhnya menggantikan sistem sebelumnya, karena biaya.[1] Rudal membawa penunjukan Grau 9M133 dan nama pelaporan NATO AT-14 Spriggan.[2] Referensi ^ KORNET-E ANTITANK MISSILE SYSTEM. KBP Instrument Design Bureau. 2008. Diarsipkan dari vers...

 

United States historic placeOld City WaterworksU.S. National Register of Historic Places Old City WaterworksShow map of FloridaShow map of the United StatesLocationTallahassee, FloridaCoordinates30°26′8″N 84°16′41″W / 30.43556°N 84.27806°W / 30.43556; -84.27806NRHP reference No.79000680[1]Added to NRHPJanuary 31, 1979 The Old City Waterworks is a historic site in Tallahassee, Florida. It is located at East Gaines and South Gadsden Streets....

 

Sveriges Radio Tipo Empresa públicaIndustria Medios de comunicaciónForma legal AktiebolagFundación 1925Fundador SueciaSede central Estocolmo, Suecia.Productos Radio, MultimediaPropietario Foundation Management for SR, SVT, and UREmpresa matriz Foundation Management for SR, SVT, and URMiembro de Unión Europea de RadiodifusiónCoordenadas 59°20′05″N 18°06′05″E / 59.3347, 18.1014Sitio web http://www.sr.se/[editar datos en Wikidata] Sveriges Radio (en espa...

Eton CollegeInformasiAlamatSitus webhttp://www.etoncollege.com/MotoMotoFloreat EtonaLatin: Let Eton flourish Eton College, biasa disebut dengan Eton, adalah sebuah sekolah asrama independen di Britania Raya untuk siswa yang berusia antara 13 hingga 18 tahun. Sekolah ini adalah salah satu sekolah khusus pria terbesar di Britania Raya, dengan jumlah siswanya mencapai 1.300 orang. Eton didirikan oleh Raja Henry VI pada tahun 1440 dengan nama The King's College of Our Lady of Eton besides Wy...

 

Aneka macam pinset. Pinset atau cunam (serapan dari Belanda: pincet) adalah perkakas tangan yang digunakan untuk menjepit benda terlalu kecil yang susah dipegang dan digenggam dengan jari manusia. Pinset berbentuk penjepit kecil yang umumnya digerakkan oleh ibu jari dan telunjuk. Benda ini kemungkinan besar ditiru dari pencapit yang digunakan untuk mengambil atau menahan benda panas.[1] Istilah Kata pinset merupakan serapan dari bahasa Belanda: pincet (pengucapan bahasa Belanda:&#...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!