Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene Opn4.[5] In the mammalian retina, there are two additional categories of opsins, both involved in the formation of visual images: rhodopsin and photopsin (types I, II, and III) in the rod and cone photoreceptor cells, respectively.
In humans, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs).[6] It is also found in the iris of mice and primates.[7] Melanopsin is also found in rats, amphioxus, and other chordates.[8] ipRGCs are photoreceptor cells which are particularly sensitive to the absorption of short-wavelength (blue) visible light and communicate information directly to the area of the brain called the suprachiasmatic nucleus (SCN), also known as the central "body clock", in mammals.[9] Melanopsin plays an important non-image-forming role in the setting of circadian rhythms as well as other functions. Mutations in the Opn4 gene can lead to clinical disorders, such as Seasonal Affective Disorder (SAD).[10] According to one study, melanopsin has been found in eighteen sites in the human brain (outside the retinohypothalamic tract), intracellularly, in a granular pattern, in the cerebral cortex, the cerebellar cortex and several phylogenetically old regions, primarily in neuronal soma, not in nuclei.[11] Melanopsin is also expressed in human cones. However, only 0.11% to 0.55% of human cones express melanopsin and are exclusively found in the peripheral regions of the retina.[12] The human peripheral retina senses light at high intensities that is best explained by four different photopigment classes.[13]
Discovery
Melanopsin was discovered by Ignacio Provencio as a new opsin in the melanophores, or light-sensitive skin cells, of the African clawed frog in 1998.[14] A year later, researchers found that mice without any rods or cones, the cells involved in image-forming vision, still entrained to a light-dark cycle.[15] This observation led to the conclusion that neither rods nor cones, located in the outer retina, are necessary for circadian entrainment and that a third class of photoreceptor exists in the mammalian eye.[5] Provencio and colleagues then found in 2000 that melanopsin is also present in mouse retina, specifically in ganglion cells, and that it mediates non-visual photoreceptive tasks.[16] Melanopsin is encoded by the Opn4 gene with orthologs in a variety of organisms.[5]
These retinal ganglion cells were found to be innately photosensitive, since they responded to light even while isolated, and were thus named intrinsically photosensitive Retinal Ganglion Cells (ipRGCs).[17] They constitute a third class of photoreceptor cells in the mammalian retina, besides the already known rods and cones, and were shown to be the principal conduit for light input to circadian photoentrainment.[16] In fact, it was later demonstrated by Satchidananda Panda and colleagues that melanopsin pigment may be involved in entrainment of a circadian oscillator to light cycles in mammals since melanopsin was necessary for blind mice to respond to light.[18]
Species distribution
Mammals have orthologous melanopsin genes named Opn4m, which are derived from one branch of the Opn4 family, and are approximately 50-55% conserved.[19] However, non-mammalian vertebrates, including chickens and zebrafish, have another version of the melanopsin gene, Opn4x, which appears to have a distinct lineage that diverged from Opn4m about 360 million years ago.[20] Mammals lost the gene Opn4x relatively early in their evolution, leading to a general reduction in photosensory capability. It is thought that this event can be explained by the fact that this occurred during the time in which nocturnal mammals were evolving.[19]
Structure
The human melanopsin gene, opn4, is expressed in ipRGCs, which comprises only 1-2% of RGCs in the inner mammalian retina, as studied by Samer Hattar and colleagues.[9] The gene spans approximately 11.8 kb and is mapped to the long arm of chromosome 10. The gene includes nine introns and ten exons compared to the four to seven exons typically found in other human opsins.[16] In non-mammalian vertebrates, melanopsin is found in a wider subset of retinal cells, as well as in photosensitive structures outside the retina, such as the iris muscle of the eye, deep brain regions, the pineal gland, and the skin.[19]Paralogs of Opn4 include OPN1LW, OPN1MW, rhodopsin and encephalopsin.[21]
Melanopsin-containing ganglion cells,[32] like rods and cones, exhibit both light and dark adaptation; they adjust their sensitivity according to the recent history of light exposure.[33] However, while rods and cones are responsible for the reception of images, patterns, motion, and color, melanopsin-containing ipRGCs contribute to various reflexive responses of the brain and body to the presence of light.[17]
Evidence for melanopsin's physiological light detection has been tested in mice. A mouse cell line that is not normally photosensitive, Neuro-2a, is rendered light-sensitive by the addition of human melanopsin. The photoresponse is selectively sensitive to short-wavelength light (peak absorption ~479 nm),[34][35] and has an intrinsic photoisomerase regeneration function that is chromatically shifted to longer wavelengths.[36]
Melanopsin photoreceptors are sensitive to a range of wavelengths and reach peak light absorption at blue light wavelengths around 480 nanometers.[37] Other wavelengths of light activate the melanopsin signaling system with decreasing efficiency as they move away from the optimum 480 nm. For example, shorter wavelengths around 445 nm (closer to violet in the visible spectrum) are half as effective for melanopsin photoreceptor stimulation as light at 480 nm.[37]
Melanopsin in the iris of some, primarily nocturnal, mammals closes the iris when it is exposed to light. This local pupil light reflex (PLR) is absent from primates, even though their irises express melanopsin.[7]
Mechanism
When light with an appropriate frequency enters the eye, it activates the melanopsin contained in intrinsically photosensitive retinal ganglion cells (ipRGCs), triggering an action potential. These neuronal electrical signals travel through neuronal axons to specific brain targets, such as the center of pupillary control called the olivary pretectal nucleus (OPN) of the midbrain. Consequently, stimulation of melanopsin in ipRGCs mediates behavioral and physiological responses to light, such as pupil constriction and inhibition of melatonin release from the pineal gland.[38][39] The ipRGCs in the mammalian retina are one terminus of the retinohypothalamic tract that projects to the suprachiasmatic nucleus (SCN) of the hypothalamus. The suprachiasmatic nucleus is sometimes described as the brain's "master clock",[40] as it maintains the circadian rhythm, and nerve signals from ipRGCs to the SCN entrain the internal circadian rhythm to the rising and setting of the sun.[9] The SCN also receives input from rods and cones through the retinohypothalamic tract, so information from all three photosensitive cell types (rods, cones, and ipRGCs) in the mammalian retina are transmitted to the (SCN) SCN.[41]
Melanopsin-containing ganglion cells are thought to influence these targets by releasing the neurotransmittersglutamate and pituitary adenylate cyclase activating polypeptide (PACAP) from their axon terminals.[42] Melanopsin-containing ganglion cells also receive input from rods and cones that can add to the input to these pathways.
In mammals, the eye is the main photosensitive organ for the transmission of light signals to the brain. However, blind humans are still able to entrain to the environmental light-dark cycle, despite having no conscious perception of the light. One study exposed subjects to bright light for a prolonged duration of time and measured their melatonin concentrations. Melatonin was not only suppressed in visually unimpaired humans, but also in blind participants, suggesting that the photic pathway used by the circadian system is functionally intact despite blindness.[44] Therefore, physicians no longer practice enucleation of blind patients, or removal of the eyes at birth, since the eyes play a critical role in the photoentrainment of the circadian pacemaker.
In mutant breeds of mice that lacked only rods, only cones, or both rods and cones, all breeds of mice still entrained to changing light stimuli in the environment, but with a limited response, suggesting that rods and cones are not necessary for circadian photoentrainment and that the mammalian eye must have another photopigment required for the regulation of the circadian clock.[15]
Melanopsin-knockout mice display reduced photoentrainment. In comparison to wild-type mice that expressed melanopsin normally, deficits in light-induced phase shifts in locomotion activity were noted in melanopsin-null mice (Opn4 -/-).[18] These melanopsin-deficient mice did not completely lose their circadian rhythms, as they were still able to entrain to changing environmental stimuli, albeit more slowly than normal.[45] This indicated that, although melanopsin is sufficient for entrainment, it must work in conjunction with other photopigments for normal photoentrainment activity. Triple-mutant mice that were rod-less, cone-less, and melanopsin-less display a complete loss in the circadian rhythms, so all three photopigments in these photoreceptors, rhodopsin, photopsin and melanopsin, are necessary for photoentrainment.[46] Therefore, there is a functional redundancy between the three photopigments in the photoentrainment pathway of mammals. Deletion of only one photopigment does not eliminate the organism's ability to entrain to environmental light-dark cycles, but it does reduce the intensity of the response.
Regulation
Melanopsin undergoes phosphorylation on its intracellular carboxy tail as a way to deactivate its function. Compared to other opsins, melanopsin has an unusually long carboxy tail that contains 37 serine and threonine amino acid sites that could undergo phosphorylation.[47] However, a cluster of seven amino acids are sufficient to deactivate zebrafish melanopsin. These sites are dephosphorylated when melanopsin is exposed to light and are unique from those that regulate rhodopsin.[48] They are important for proper response to calcium ions in ipRGCs; lack of functional phosphorylation sites, particularly at serine-381 and serine-398, reduce the cell's response to light-induced calcium ion influx when voltage-gated calcium ion channels open.[49]
In terms of the gene Opn4, Dopamine (DA) is a factor in the regulation of melanopsin mRNA in ipRGCs.[50]
Clinical significance
The discovery of the role of melanopsin in non-image forming vision has led to a growth in optogenetics. This field has shown promise in clinical applications, including the treatment of human eye diseases such as retinitis pigmentosa and diabetes.[51] A missense mutation in Opn4, P10L, has been implicated in 5% of patients with Seasonal Affective Disorder (SAD).[10] This is a condition in which people experience depressive thoughts in the winter due to decreased available light. Additionally, a melanopsin based receptor has been linked to migraine pain.[52]
Restoration of vision
There has been recent research on the role of melanopsin in optogenetic therapy for patients with the degenerative eye disease retinitis pigmentosa (RP).[53] Reintroducing functional melanopsin into the eyes of mice with retinal degeneration restores the pupillary light reflex (PLR). These same mice could also distinguish light stimuli from dark stimuli and showed increased sensitivity to room light. The higher sensitivity demonstrated by these mice shows promise for vision restoration that may be applicable to humans and human eye diseases.[51][54]
Control of sleep/wake patterns
Melanopsin may aid in controlling sleep cycles and wakefulness. Tsunematsu and colleagues created transgenic mice that expressed melanopsin in hypothalamicorexin neurons. With a short 4-second pulse of blue light (guided by optical fibers), the transgenic mice could successfully transition from slow-wave sleep (SWS), which is commonly known as "deep sleep," to long-lasting wakefulness. After switching off the blue light, the hypothalamic orexin neurons showed activity for several tens of seconds.[51][55] It has been shown that rods and cones play no role in the onset of sleep by light, distinguishing them from ipRGCs and melanopsin. This provides strong evidence that there is a link between ipRGCs in humans and alertness, particularly with high frequency light (e.g. blue light). Therefore, melanopsin can be used as a therapeutic target for controlling the sleep-wake cycle.[56]
Regulation of blood glucose levels
In a paper published by Ye and colleagues in 2011, melanopsin was utilized to create an optogenetic synthetic transcription device that was tested in a therapeutic setting to produce Fc-glucagon-like peptide 1 (Fc-GLP-1), a fusion protein that helps control blood glucose levels in mammals with Type II Diabetes. The researchers subcutaneously implanted mice with microencapsulated transgenic HEK 293 cells that were cotransfected with two vectors including the melanopsin gene and the gene of interest under an NFAT (nuclear factor of activated T cells) promoter, respectively. It is through this engineered pathway that they successfully controlled the expression of Fc-GLP-1 in doubly recessive diabetic mice and reduced hyperglycemia, or high blood glucose levels, in these mice. This shows promise for the use of melanopsin as an optogenetic tool for the treatment of Type II diabetes.[51][57]
^Provencio I, Warthen DM (2012). "Melanopsin, the photopigment of intrinsically photosensitive retinal ganglion cells". Wiley Interdisciplinary Reviews: Membrane Transport and Signaling. 1 (2): 228–237. doi:10.1002/wmts.29.
^Nissilä J, Mänttäri S, Tuominen H, Särkioja T, Takala T, Saarela S, et al. (2012). "P-780 – The abundance and distribution of melanopsin (OPN4) protein in human brain". European Psychiatry. 27: 1–8. doi:10.1016/S0924-9338(12)74947-7. S2CID82045589.
^ abFreedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z, et al. (April 1999). "Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors". Science. 284 (5413): 502–504. Bibcode:1999Sci...284..502F. doi:10.1126/science.284.5413.502. PMID10205061.
^Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G (December 2005). "Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells". The European Journal of Neuroscience. 22 (12): 3129–3136. doi:10.1111/j.1460-9568.2005.04512.x. PMID16367779. S2CID21517576.
^ abcdKoizumi A, Tanaka KF, Yamanaka A (January 2013). "The manipulation of neural and cellular activities by ectopic expression of melanopsin". Neuroscience Research. 75 (1): 3–5. doi:10.1016/j.neures.2012.07.010. PMID22982474. S2CID21771987.
^Tsunematsu T, Tanaka KF, Yamanaka A, Koizumi A (January 2013). "Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light". Neuroscience Research. 75 (1): 23–28. doi:10.1016/j.neures.2012.07.005. PMID22868039. S2CID207152803.
Josep Lobató Información personalNombre de nacimiento Josep Antoni Lobató PérezNacimiento 16 de junio de 1977 (46 años)Esplugas de Llobregat, Barcelona, España EspañaNacionalidad EspañolaInformación profesionalOcupación Presentador de televisión y periodista Años activo desde 1998Empleador Televisión Española Sitio web www.josep-lobato.comDistinciones Premio Ondas (2007) [editar datos en Wikidata] Josep Antoni Lobató Pérez, más conocido como Josep Lobat
Naskah 7QEn gr yang terdiri dari gabungan potongan-potongan yang cocok dari 7Q4, 7Q8 dan 7Q12. 7Q12 adalah suatu potongan kecil naskah kuno yang ditulis pada lembaran perkamen dalam bahasa Yunani yang ditemukan di gua 7 di Qumran, dan tergolong ke dalam kumpulan Naskah Laut Mati. Diperkirakan dibuat pada sekitar 100 tahun Sebelum Masehi. Meskipun hanya dua huruf diawetkan secara keseluruhan telah memainkan peran penting dalam mengidentifikasi sejumlah teks lain yang ditemukan di Qumran gua 7....
Municipality in Troms og Finnmark, Norway This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Tromsø – news · newspapers · books · scholar · JSTOR (July 2023) (Learn how and when to remove this template message) This article is about the municipality in Norway. For the city in Tromsø municipality, see Tromsø ...
Perpustakaan neo-klasik Enderun Sekolah Enderun (Turki Utsmaniyah: اندرون مکتب, Enderûn Mektebi) adalah sebuah sekolah istana dan sekolah dasar yang sebagian besar untuk millet Kristen di Kekaisaran Utsmaniyah, yang utamanya merekrut murid-murid melalui devşirme,[1] sebuah sistem Islamisasi anak-anak Kristen untuk bertugas pada pemerintahan Utsmaniyah dalam birokratik, manajerial, dan posisi militer Janisari.[2] Kurikulum Kurikulumnya terbagi dalam lima divisi utam...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: King Pellinore – news · newspapers · books · scholar · JSTOR (October 2023) (Learn how and when to remove this template message) King Pellinore /ˈpɛlɪnɔːr/ (alternatively Pellinor, Pellynore and other variants) is the king of Listenoise (possibly the Lake ...
American ice hockey player Ice hockey player Kevin Mitchell Born (1980-06-05) June 5, 1980 (age 43)The Bronx, New York, USAHeight 6 ft 1 in (185 cm)Weight 194 lb (88 kg; 13 st 12 lb)Position DefenseShoots LeftAL teamFormer teams Nikko IcebucksHamilton BulldogsHouston AerosBridgeport Sound TigersCleveland BaronsIserlohn RoostersVienna CapitalsHamburg FreezersHDD Olimpija LjubljanaRapperswil-Jona LakersHC PardubiceEC VSVRitten-RenonMora IKGraz 99ersNHL Dr...
1998 studio album by MonifahMo'hoganyStudio album by MonifahReleasedAugust 25, 1998Recorded1997–1998GenreR&B[1]Length52:27Label Uptown Universal Producer Heavy D Tony Dofat Chad Elliott Rob Fusari Vincent Herbert N.O. Joe Jack Knight Queen Latifah Alvin West Mario Winans Monifah chronology Moods...Moments(1996) Mo'hogany(1998) Home(2000) Singles from Mo'hogany Touch ItReleased: July 21, 1998 Mo'hogany is the second album by American R&B singer Monifah. It was release...
Cet article est une ébauche concernant le chemin de fer et la Suisse. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Transports publics du Chablais Création 1999 Prédécesseur Compagnie du chemin de fer Aigle-Leysin (d)Chemin de fer Aigle-Sépey-Diablerets (d)Chemin de fer Aigle-Ollon-Monthey-Champéry (d)Compagnie du chemin de fer Bex-Villars-Bretaye (d) Siège social Aigle Suisse Direction Grégoire Pr...
American alternative medicine proponent and purveyor of anti-vaccination misinformation Joseph MercolaMercola in 2009Born (1954-07-08) July 8, 1954 (age 69)Chicago, Illinois, U.S.EducationUniversity of Illinois, Urbana-Champaign (BS)Midwestern University (DO)PartnerErin ElizabethMedical careerSub-specialtiesNutrition Joseph Michael Mercola (/mərˈkoʊlə/;[1] born July 8, 1954) is an American alternative medicine proponent, osteopathic physician, and Internet business personalit...
Croatian water polo player Paulo Obradović Personal informationBorn (1986-03-09) 9 March 1986 (age 37)Dubrovnik, SR Croatia, SFR YugoslaviaNationality CroatianHeight 1.90 m (6 ft 3 in)Weight 100 kg (220 lb)Club informationCurrent team EnkaSenior clubsYears Team2003–2012 Jug Dubrovnik2012–2014 Primorje Rijeka2014–2017 Jug Dubrovnik2017–2019 Olympiacos2019–2021 Jug Dubrovnik2021–present Enka Medal record Olympic Games 2012 London Team World Championshi...
Ten artykuł dotyczy dzielnicy Olsztyna. Zobacz też: inne miejsca o tej nazwie. GutkowoGöttkendorf Osiedle Olsztyna Państwo Polska Województwo warmińsko-mazurskie Miasto Olsztyn W granicach Olsztyna 1 stycznia 1966[1] / 14 listopada 1987[2] Powierzchnia 7,19[3] km² Wysokość 132 m n.p.m. Populacja (2011)• liczba ludności 3 553[3] • gęstość 494,1 os./km² Położenie na mapie Olsztyna 53°48′00″N 20°23′57″E/53,800000 20,399167 M...
2003 action horror film by Len Wiseman UnderworldTheatrical release posterDirected byLen WisemanScreenplay byDanny McBrideStory by Kevin Grevioux Len Wiseman Danny McBride Produced by Tom Rosenberg Gary Lucchesi Richard Wright Starring Kate Beckinsale Scott Speedman Michael Sheen Shane Brolly Erwin Leder Bill Nighy CinematographyTony Pierce-RobertsEdited byMartin HunterMusic byPaul HaslingerProductioncompanies Screen Gems Lakeshore Entertainment Distributed by Sony Pictures Releasing (United ...
1999 South Korean filmThe Harmonium in My MemoryTheatrical posterKorean nameHangul내 마음의 풍금Hanja내 마음의 風琴Revised RomanizationNae Maeumui PunggeumMcCune–ReischauerNae Maŭmŭi P‘unggŭm Directed byLee Young-jaeWritten byLee Young-jaeBased onFemale Studentby Ha Keum-chanProduced bySeo Hyun-seokStarringLee Byung-hunJeon Do-yeonLee Mi-yeonCinematographyJeon Jo-myeongEdited byKyung Min-hoMusic byCho Dong-ikRelease date 27 March 1999 (1999-03-27) CountrySout...
Woreda in South Ethiopia, EthiopiaDiguna Fango Duguna Panggo Allaanaa (Wolaytta)ድጉና ፋንጎ ወረዳ (Amharic)WoredaCountry EthiopiaRegionSouth EthiopiaZoneWolaitaEstablished1998 E.C.SeatBitenaGovernment • Chief administratorTemesgen Dansa (Prosperity Party)Population (2019) • Total122,924 • Male60,326 • Female62,924 Diguna Fango is one of the woredas in the South Ethiopia Regional State of Ethiopia. It is a Part of ...
2002 filmThe Game of Their LivesKorean nameHangul천리마 축구단Hanja千里馬蹴球團Revised RomanizationCheollima ChukgudanMcCune–ReischauerCh'ŏllima Ch'ukkudan Directed byDaniel GordonProduced byDaniel Gordon (principal), Nicholas Bonner (associate producer)Edited byJustine WrightRelease date21 October 2002Running time80 minutesLanguageEnglish The Game of Their Lives (천리마 축구단; Ch'ŏllima Ch'ukkudan, Chollima Football Team) is a 2002 documentary film directed by Dani...
Canadian ice hockey player Ice hockey player Michael Kostka Kostka as a Ranger in October 2014.Born (1985-11-28) November 28, 1985 (age 38)Ajax, Ontario, CanadaHeight 6 ft 2 in (188 cm)Weight 210 lb (95 kg; 15 st 0 lb)Position DefenceShot RightPlayed for Toronto Maple LeafsChicago Blackhawks Tampa Bay LightningNew York RangersOttawa SenatorsSkellefteå AIKNHL Draft UndraftedPlaying career 2008–2018 Michael Christopher Kostka (born November 28, 198...
DFCU FinancialTypeCredit unionIndustryFinancial servicesFounded1950HeadquartersDearborn, Michigan, United StatesKey peopleJim Cowper, Chairman of the BoardRyan Goldberg, President and CEOProductsSavings; checking; consumer loans; mortgages; credit cards; online bankingTotal assets$6.5 billion USD (2021)Websitedfcufinancial.com DFCU Financial is a state-chartered credit union headquartered in Dearborn, Michigan, regulated by Michigan's Department of Licensing and Regulatory Affairs (LARA).[...
German computer scientist Lutz M. WegnerBorn (1949-10-11) October 11, 1949 (age 74)Weinsberg, GermanyCitizenshipGermanyAlma materUniversity of KarlsruheKnown forTwo-level grammar, sorting, multisetsScientific careerFieldsComputer ScienceInstitutionsUniversity of KasselThesisAnalysis of two-level grammars (1977)Doctoral advisorHermann Maurer Lutz Michael Wegner (born October 11, 1949) is a German computer scientist. Biography Wegner was born in Weinsberg near Heilbronn, Ger...
The Nightmare Before ChristmasPoster layar lebarSutradara Henry Selick Produser Tim Burton Denise Di Novi Ditulis oleh Caroline Thompson SkenarioMichael McDowellCeritaTim BurtonPemeranDanny ElfmanChris SarandonCatherine O'HaraWilliam HickeyGlen ShadixKen PagePenata musikDanny ElfmanSinematograferPete KozachikPenyuntingStan WebbPerusahaanproduksiSkellington ProductionsDistributorRilis 1993:Touchstone PicturesDisney Digital 3-D:Walt Disney PicturesTanggal rilis29 Oktober 1993Durasi76 meni...
Sida « Sida » redirige ici. Pour les autres significations, voir Sida (homonymie). Cet article concerne le syndrome chez l'humain. Pour le virus associé, voir Virus de l'immunodéficience humaine. Pour le sida chez d'autres mammifères, voir Lentivirus. Syndrome d'immunodéficience acquise Le ruban rouge, symbole de la lutte contre le sida. Données clés Causes Virus de l'immunodéficience humaine Symptômes Fièvre, adénopathie, diarrhée, léthargie (en), amaigrisseme...