Friendly number

In number theory, friendly numbers are two or more natural numbers with a common abundancy index, the ratio between the sum of divisors of a number and the number itself. Two numbers with the same "abundancy" form a friendly pair; n numbers with the same abundancy form a friendly n-tuple.

Being mutually friendly is an equivalence relation, and thus induces a partition of the positive naturals into clubs (equivalence classes) of mutually friendly numbers.

A number that is not part of any friendly pair is called solitary.

The abundancy index of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists mn such that σ(m) / m = σ(n) / n. Abundancy is not the same as abundance, which is defined as σ(n) − 2n.

Abundancy may also be expressed as where denotes a divisor function with equal to the sum of the k-th powers of the divisors of n.

The numbers 1 through 5 are all solitary. The smallest friendly number is 6, forming for example, the friendly pair 6 and 28 with abundancy σ(6) / 6 = (1+2+3+6) / 6 = 2, the same as σ(28) / 28 = (1+2+4+7+14+28) / 28 = 2. The shared value 2 is an integer in this case but not in many other cases. Numbers with abundancy 2 are also known as perfect numbers. There are several unsolved problems related to the friendly numbers.

In spite of the similarity in name, there is no specific relationship between the friendly numbers and the amicable numbers or the sociable numbers, although the definitions of the latter two also involve the divisor function.

Examples

As another example, 30 and 140 form a friendly pair, because 30 and 140 have the same abundancy:[1]

The numbers 2480, 6200 and 40640 are also members of this club, as they each have an abundancy equal to 12/5.

For an example of odd numbers being friendly, consider 135 and 819 (abundancy 16/9 (deficient)). There are also cases of even numbers being friendly to odd numbers, such as 42, 3472, 56896, ... (sequence A347169 in the OEIS) and 544635 (abundancy of 16/7). The odd friend may be less than the even one, as in 84729645 and 155315394 (abundancy of 896/351), or in 6517665, 14705145 and 2746713837618 (abundancy of 64/27).

A square number can be friendly, for instance both 693479556 (the square of 26334) and 8640 have abundancy 127/36 (this example is credited to Dean Hickerson).

Status for small n

In the table below, blue numbers are proven friendly (sequence A074902 in the OEIS), red numbers are proven solitary (sequence A095739 in the OEIS), numbers n such that n and are coprime (sequence A014567 in the OEIS) are left uncolored, though they are known to be solitary. Other numbers have unknown status and are yellow.

The sum of an integer's unique factors, up to n=2000.
The friendly number index of integers up to 2000, computed by calculating the sum of its unique factors and dividing by n. In addition to apparent noise, distinct lines begin to appear.
1 1 1
2 3 3/2
3 4 4/3
4 7 7/4
5 6 6/5
6 12 2
7 8 8/7
8 15 15/8
9 13 13/9
10 18 9/5
11 12 12/11
12 28 7/3
13 14 14/13
14 24 12/7
15 24 8/5
16 31 31/16
17 18 18/17
18 39 13/6
19 20 20/19
20 42 21/10
21 32 32/21
22 36 18/11
23 24 24/23
24 60 5/2
25 31 31/25
26 42 21/13
27 40 40/27
28 56 2
29 30 30/29
30 72 12/5
31 32 32/31
32 63 63/32
33 48 16/11
34 54 27/17
35 48 48/35
36 91 91/36
37 38 38/37
38 60 30/19
39 56 56/39
40 90 9/4
41 42 42/41
42 96 16/7
43 44 44/43
44 84 21/11
45 78 26/15
46 72 36/23
47 48 48/47
48 124 31/12
49 57 57/49
50 93 93/50
51 72 24/17
52 98 49/26
53 54 54/53
54 120 20/9
55 72 72/55
56 120 15/7
57 80 80/57
58 90 45/29
59 60 60/59
60 168 14/5
61 62 62/61
62 96 48/31
63 104 104/63
64 127 127/64
65 84 84/65
66 144 24/11
67 68 68/67
68 126 63/34
69 96 32/23
70 144 72/35
71 72 72/71
72 195 65/24
73 74 74/73
74 114 57/37
75 124 124/75
76 140 35/19
77 96 96/77
78 168 28/13
79 80 80/79
80 186 93/40
81 121 121/81
82 126 63/41
83 84 84/83
84 224 8/3
85 108 108/85
86 132 66/43
87 120 40/29
88 180 45/22
89 90 90/89
90 234 13/5
91 112 16/13
92 168 42/23
93 128 128/93
94 144 72/47
95 120 24/19
96 252 21/8
97 98 98/97
98 171 171/98
99 156 52/33
100 217 217/100
101 102 102/101
102 216 36/17
103 104 104/103
104 210 105/52
105 192 64/35
106 162 81/53
107 108 108/107
108 280 70/27
109 110 110/109
110 216 108/55
111 152 152/111
112 248 31/14
113 114 114/113
114 240 40/19
115 144 144/115
116 210 105/58
117 182 14/9
118 180 90/59
119 144 144/119
120 360 3
121 133 133/121
122 186 93/61
123 168 56/41
124 224 56/31
125 156 156/125
126 312 52/21
127 128 128/127
128 255 255/128
129 176 176/129
130 252 126/65
131 132 132/131
132 336 28/11
133 160 160/133
134 204 102/67
135 240 16/9
136 270 135/68
137 138 138/137
138 288 48/23
139 140 140/139
140 336 12/5
141 192 64/47
142 216 108/71
143 168 168/143
144 403 403/144

Solitary numbers

A number that belongs to a singleton club, because no other number is friendly with it, is a solitary number. All prime numbers are known to be solitary, as are powers of prime numbers. More generally, if the numbers n and σ(n) are coprime – meaning that the greatest common divisor of these numbers is 1, so that σ(n)/n is an irreducible fraction – then the number n is solitary (sequence A014567 in the OEIS). For a prime number p we have σ(p) = p + 1, which is co-prime with p.

No general method is known for determining whether a number is friendly or solitary. The smallest number whose classification is unknown is 10; it is conjectured to be solitary. If it is not, its smallest friend is at least .[2][3] Small numbers with a relatively large smallest friend do exist: for instance, 24 is friendly, with its smallest friend 91,963,648.[2][3]

Large clubs

It is an open problem whether there are infinitely large clubs of mutually friendly numbers. The perfect numbers form a club, and it is conjectured that there are infinitely many perfect numbers (at least as many as there are Mersenne primes), but no proof is known. There are clubs with more known members: in particular, those formed by multiply perfect numbers, which are numbers whose abundancy is an integer. Although some are known to be quite large, clubs of multiply perfect numbers (excluding the perfect numbers themselves) are conjectured to be finite.

Asymptotic density

Every pair a, b of friendly numbers gives rise to a positive proportion of all natural numbers being friendly (but in different clubs), by considering pairs na, nb for multipliers n with gcd(n, ab) = 1. For example, the "primitive" friendly pair 6 and 28 gives rise to friendly pairs 6n and 28n for all n that are congruent to 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, or 41 modulo 42.[4]

This shows that the natural density of the friendly numbers (if it exists) is positive.

Anderson and Hickerson proposed that the density should in fact be 1 (or equivalently that the density of the solitary numbers should be 0).[4] According to the MathWorld article on Solitary Number (see References section below), this conjecture has not been resolved, although Pomerance thought at one point he had disproved it.

Notes

  1. ^ "Numbers with Cool Names: Amicable, Sociable, Friendly". 10 May 2023. Retrieved 26 July 2023.
  2. ^ a b Cemra, Jason (23 July 2022). "10 Solitary Check". Github/CemraJC/Solidarity.
  3. ^ a b "OEIS sequence A074902". On-Line Encyclopedia of Integer Sequences. Retrieved 10 July 2020.
  4. ^ a b Anderson, C. W.; Hickerson, Dean; Greening, M. G. (1977). "6020". The American Mathematical Monthly. 84 (1): 65–66. doi:10.2307/2318325. JSTOR 2318325.

References

Read other articles:

Russian icon of Saint Joseph Volotsky Joseph Volotsky — also known as Joseph of Volotsk or Joseph of Volokolamsk (Russian: Ио́сиф Во́лоцкий); secular name Ivan Sanin (Russian: Ива́н Са́нин) (1439 or 1440 – September 9, 1515) — was a prominent Russian theologian and early proponent of tsarist autocracy, who led the party defending monastic landownership. The Russian Orthodox Church considers him a saint (along with his most notable opponent, Nilus of Sora); ...

 

College in Wytheville, Virginia, U.S. This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Wytheville Community College – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this template message) 36°57′27.6″N 81°4′14.3″W / 36.957667°N 81.070639°W / 36.957667...

 

Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Charles VII of France di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan. (Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan pe...

Head of the Catholic Church from 1352 to 1362 PopeInnocent VIBishop of RomeFresco at Santa Maria NovellaChurchCatholic ChurchPapacy began18 December 1352Papacy ended12 September 1362PredecessorClement VISuccessorUrban VOrdersCreated cardinal20 September 1342by Clement VIPersonal detailsBornÉtienne Aubert1282Les Monts, Kingdom of FranceDied12 September 1362(1362-09-12) (aged 79–80)Avignon, Papal StatesCoat of armsOther popes named Innocent Papal styles ofPope Innocent VIReference style...

 

For the Washington Metro station, see Congress Heights Station. Malcolm X Avenue redirects here. For Malcolm X Boulevard in Manhattan, see Lenox Avenue. For Malcolm X Boulevard in Brooklyn, see Utica Avenue. Neighborhood in Ward 8, United StatesCongress HeightsNeighborhoodMap of Washington, D.C., with the Congress Heights neighborhood highlighted in redCoordinates: 38°50′25.5948″N 077°00′00″W / 38.840443000°N 77.00000°W / 38.840443000; -77.00000CountryUnite...

 

Sudsudan Botschaft der Republik Südsudan in der Bundesrepublik Deutschland Logo Staatliche Ebene bilateral Stellung der Behörde Botschaft Aufsichts­behörde(n) Außenministerium Bestehen seit 2012 Hauptsitz Deutschland Berlin Botschafter Mawien Makol Ariik Mitarbeiter 5 Website www.embassy-southsudan.de Botschaftssitz am Leipziger Platz 8 Die südsudanesische Botschaft in Berlin ist die diplomatische Vertretung der Republik Südsudan in Deutschland. Sie befindet sich am Leipziger ...

アンナ・クルニコワ Anna Kournikova アンナ・クルニコワ(2009年)基本情報フルネーム Anna Sergeyevna Kournikova国籍 ロシア出身地 ソビエト連邦 ロシア・ソビエト連邦社会主義共和国、モスクワ居住地 アメリカ合衆国、マイアミ生年月日 (1981-06-07) 1981年6月7日(42歳)身長 173cm体重 56kg利き手 右バックハンド 両手打ちツアー経歴デビュー年 1995年引退年 2003年ツアー通算 16勝シン...

 

Pirate radio station in Nuevo Laredo, Tamaulipas (2006–2008) La TremendaNuevo Laredo, TamaulipasBroadcast areaNuevo Laredo, TamaulipasLaredo, TexasFrequency106.5 MHzBrandingLa TremendaProgrammingFormatInternational contemporaryOwnershipOwnerJavier DelgadoHistoryFirst air dateMay 2006 (2006-05)Last air dateJune 5, 2008 (2008-06-05)Technical informationClasspirate radioLinksWebsitewww.tremenda.com.mx La Tremenda (branded as La Tremenda de los Dos Laredos) was an inter...

 

Kruger National Park CommandoKruger National Park CommandoCountry South AfricaAllegiance  Republic of South Africa  Republic of South Africa Branch  South African Army  South African Army TypeInfantryRoleLight InfantrySizeOne BattalionPart ofSouth African Infantry CorpsArmy Territorial ReserveGarrison/HQKruger National ParkMilitary unit Kruger National Park Commando was a light infantry regiment of the South African Army. It formed part of the South African Army ...

MasoudSpring of 2011 Press Photo Shoot By Ardeshir SabetiBackground informationBirth nameMasoud Fouladi MoghaddamAlso known asCaspian Beat, Dj MaSound, Masoud Fuladi[1]Born (1985-05-22) May 22, 1985 (age 38)Bandar-e Anzali, IranGenresElectronic dance music, Progressive house, Vocal trance, progressive tranceOccupation(s)Music producer, artist, djInstrument(s)Keyboard, piano, guitarYears active2009–presentLabelsArmada Music, AVA Recordings, Flashover RecordingsWebsitemasoudfulad...

 

Pemilihan umum Gubernur Sulawesi Selatan 20132007201822 Januari 2013Kandidat   Calon Syahrul Yasin Limpo Ilham Arief Sirajuddin Andi Rudiyanto Asapa Partai Partai Golongan Karya Demokrat Gerindra Pendamping Agus Arifin Nu'mang Abdul Aziz Qahhar Mudzakkar Andi Nawir Pasinringi Suara rakyat 2.251.407 1.785.580 257.973 Persentase 52,42% 41,57% 6,01% Peta persebaran suara Peta lokasi Sulawesi Selatan Gubernur dan Wakil Gubernur petahanaSyahrul Yasin Limpo dan Agus Arifin Nu'mang PDI-P G...

 

Religious and non-profit organization World Sikh OrganizationFormation1984TypeCivil rights lawHeadquartersOttawa, Ontario PresidentTejinder Singh SidhuWebsitehttp://worldsikh.org/ World Sikh Organization (WSO) is a Sikh religious and non-profit organization[1] whose 1984 founding goal was to provide an effective, credible voice to represent Sikh interests on the world stage,[1] after Operation Blue Star. Its stated goal is to promote and protect the interests of the Sikh Diasp...

San Francesco a RipaTitolo originaleSan Francesco à Ripa Chiesa di San Francesco a Ripa AutoreStendhal 1ª ed. originale1853 1ª ed. italiana1949 Genereracconto Sottogenerestorico Lingua originalefrancese AmbientazioneRoma, 1726 Personaggi Principessa Balbina Campobasso Contessa Orsini Cavaliere Jean Norbert de Sénécé Papa Benedetto XIII Monsignor Ferraterra SerieCronache italiane Modifica dati su Wikidata · Manuale San Francesco a Ripa (San Francesco à Ripa) è un racconto di Sten...

 

Companhia Independente de Polícia de Guarda A CIPGd possui sua sede anexa ao Palácio Iguaçu. País  Brasil Estado  Paraná Corporação PMPR Subordinação 1º Comando Regional Denominação Guarda do Palácio Sigla CIPGd Criação 1964 (59 anos) Aniversários 1 de Outubro Insígnias Brasão da Companhia Independente de Polícia de Guarda Sede Sede Curitiba A Companhia Independente de Polícia de Guarda (CIPGd) é uma Organização Policial Militar (OPM) da Polícia Mili...

 

Опис файлу Опис Обкладинка пісні Керрі Андервуд — «Wasted» (6 лютого 2007) Джерело Eng Wiki Час створення 2007 Автор зображення Невідомий Ліцензія див. нижче Обґрунтування добропорядного використання для статті «Wasted» [?] Мета використання Ілюстрація головного предмету с...

Heavy metal website based in Estonia This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (August 2013) (Learn how and when to remove this template message) Metal StormType of siteMusic webzine, database, reviews, communityOwnerIvan SuslinCreated byIvan SuslinURLmetals...

 

In this Chinese name, the family name is Xiao. Xiao SanXiao SanNative name萧三BornXiao Kesen (萧克森)(1896-10-10)10 October 1896Xiangxiang, Hunan, Qing ChinaDied4 February 1983(1983-02-04) (aged 86)Beijing, ChinaPen nameEmi SiaoAi MeiOccupationPoetLanguageChinese, Russian, French, German, EnglishAlma materHunan First Normal UniversityCommunist University of the Toilers of the EastMoscow Sun Yat-sen UniversityPeriod1939–1983GenrePoemNotable worksSelected Poems of Xiao SanSpous...

 

Halina KonopackaLeonarda Kazimiera Konopacka Data i miejsce urodzenia 26 lutego 1900 Rawa Mazowiecka, Królestwo Polskie, Imperium Rosyjskie Data i miejsce śmierci 28 stycznia 1989 Daytona Beach, Stany Zjednoczone Wzrost 181 cm Dorobek medalowy Reprezentacja  Polska Igrzyska olimpijskie złoto Amsterdam 1928 lekkoatletyka(rzut dyskiem) Światowe Igrzyska Kobiet złoto Göteborg 1926 rzut dyskiem złoto Praga 1930 rzut dyskiem brąz Göteborg 1926 pchnięcie kulą oburąc...

2008 studio album by LaibachLaibachkunstderfugeStudio album by LaibachReleasedMay 5, 2008GenreElectronicLength79:19LabelMute Records (Digital download)Dallas Records (CD)Laibach chronology Volk Tour LondonCC Club 16 April 2007(2007) Laibachkunstderfuge(2008) Gesamtkunstwerk- Dokument 81-86(2011) Laibachkunstderfuge (written as a whole word but sometimes dividing it with colors as Lai-Bach-Kunst-der-Fuge) is a concept album by NSK industrial group Laibach. The album is a reinterpretati...

 

Untuk Gubenur DKI Jakarta dan Menteri Dalam Negeri, lihat Soemarno Sosroatmodjo. SoemarnoSoemarno saat menjadi Menteri Keuangan Menteri Koordinator Urusan Perencanaan Pembangunan Nasional ke-2Masa jabatan24 Februari 1966 – 27 Maret 1966PresidenSoekarnoPendahuluSoeharto SastrosoeyosoPenggantiSoeharto SastrosoeyosoMenteri Koordinator Keuangan ke-13Masa jabatan13 November 1963 – 21 Februari 1966PresidenSoekarnoPendahuluNotohamiprodjoPenggantiSoeharto SastrosoeyosoMa...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!