Superior highly composite number

Divisor function d(n) up to n = 250
Prime-power factors

In number theory, a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors. Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.

For any possible exponent, whichever integer has the greatest ratio is a superior highly composite number. It is a stronger restriction than that of a highly composite number, which is defined as having more divisors than any smaller positive integer.

The first ten superior highly composite numbers and their factorization are listed.

# prime
factors
SHCN
n
Prime
factorization
Prime
exponents
# divisors
d(n)
Primorial
factorization
1 2 2 1 2 2
2 6 2 ⋅ 3 1,1 4 6
3 12 22 ⋅ 3 2,1 6 2 ⋅ 6
4 60 22 ⋅ 3 ⋅ 5 2,1,1 12 2 ⋅ 30
5 120 23 ⋅ 3 ⋅ 5 3,1,1 16 22 ⋅ 30
6 360 23 ⋅ 32 ⋅ 5 3,2,1 24 2 ⋅ 6 ⋅ 30
7 2520 23 ⋅ 32 ⋅ 5 ⋅ 7 3,2,1,1 48 2 ⋅ 6 ⋅ 210
8 5040 24 ⋅ 32 ⋅ 5 ⋅ 7 4,2,1,1 60 22 ⋅ 6 ⋅ 210
9 55440 24 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 4,2,1,1,1 120 22 ⋅ 6 ⋅ 2310
10 720720 24 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 4,2,1,1,1,1 240 22 ⋅ 6 ⋅ 30030
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are labelled in bold and superior highly composite numbers are starred. In the SVG file, hover over a bar to see its statistics.

For a superior highly composite number n there exists a positive real number ε > 0 such that for all natural numbers k > 1 we have where d(n), the divisor function, denotes the number of divisors of n. The term was coined by Ramanujan (1915).[1]

For example, the number with the most divisors per square root of the number itself is 12; this can be demonstrated using some highly composites near 12.

120 is another superior highly composite number because it has the highest ratio of divisors to itself raised to the .4 power.

The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither set, however, is a subset of the other.

Properties

Euler diagram of numbers under 100:
   Colossally abundant and superior highly composite
   Weird
   Perfect

All superior highly composite numbers are highly composite. This is easy to prove: if there is some number k that has the same number of divisors as n but is less than n itself (i.e. , but ), then for all positive ε, so if a number "n" is not highly composite, it cannot be superior highly composite.

An effective construction of the set of all superior highly composite numbers is given by the following monotonic mapping from the positive real numbers.[2] Let for any prime number p and positive real x. Then is a superior highly composite number.

Note that the product need not be computed indefinitely, because if then , so the product to calculate can be terminated once .

Also note that in the definition of , is analogous to in the implicit definition of a superior highly composite number.

Moreover, for each superior highly composite number exists a half-open interval such that .

This representation implies that there exist an infinite sequence of such that for the n-th superior highly composite number holds

The first are 2, 3, 2, 5, 2, 3, 7, ... (sequence A000705 in the OEIS). In other words, the quotient of two successive superior highly composite numbers is a prime number.

Radices

The first few superior highly composite numbers have often been used as radices, due to their high divisibility for their size. For example:

Bigger SHCNs can be used in other ways. 120 appears as the long hundred, while 360 appears as the number of degrees in a circle.

Notes

  1. ^ Weisstein, Eric W. "Superior Highly Composite Number". mathworld.wolfram.com. Retrieved 2021-03-05.
  2. ^ Ramanujan (1915); see also URL http://wwwhomes.uni-bielefeld.de/achim/hcn.dvi

References

Read other articles:

Italia Uniformi di gara Prima tenuta Tenuta alternativa Sport Rugby a 15 Federazione Federazione Italiana Rugby Soprannome «Azzurri» C.T. Kieran Crowley Record presenze Sergio Parisse (141) Record mete Marcello Cuttitta (25) Record punti Diego Domínguez (971) Piazzamento 12ª (21 novembre 2022) Sponsor tecnico Macron Esordio internazionale Spagna 9-0 ItaliaBarcellona, 20 maggio 1929 Migliore vittoria Italia 104-8 Rep. CecaViadana, 18 maggio 1994 Peggiore sconfitta Sudafrica 101-0 ItaliaDur...

 

1. SNL 2022-2023Prva liga Telemach Slovenije 2022./23. Competizione Campionato sloveno Sport Calcio Edizione 32ª Organizzatore NZS Date dal 15 luglio 2022al 20 maggio 2023 Luogo  Slovenia Partecipanti 10 Formula Doppio girone all'italiana A/R Sito web http://www.prvaliga.si/ Risultati Vincitore Olimpia Lubiana(3º titolo) Retrocessioni GoricaTabor Sežana Statistiche Miglior giocatore Žan Vipotnik[1] Miglior marcatore Žan Vipotnik (20 reti) Miglior porti...

 

PesanggaranDesaKantor Desa PesanggaranPeta lokasi Desa PesanggaranNegara IndonesiaProvinsiJawa TimurKabupatenBanyuwangiKecamatanPesanggaranKode pos68488Kode Kemendagri35.10.01.2002 Luas26.3 km²Jumlah penduduk14,481 jiwaKepadatan5,506.08 jiwa/km² Pesanggaran adalah sebuah nama desa di wilayah Pesanggaran, Kabupaten Banyuwangi, Provinsi Jawa Timur, Indonesia. Pembagian wilayah Desa Pesanggaran terdiri dari 4 dusun, yaitu: Dusun Krajan Dusun Ringinagung Dusun Ringinmulyo Dusun Ringinsari ...

Pornanong Phatlum Persoonlijke informatie Nationaliteit  Thailand Geboorteplaats Chaiyaphum Geboortedatum 4 december 1989 Lengte 1,60 m Carrière Sport Golf Profdebuut 2006 Titels 10 Overwinningen per tour Ladies European Tour 2 Ladies Asian Tour 8 Laatst bijgewerkt op: 29 november 2014 Portaal    Golf Pornanong Phatlum (Chaiyaphum, 4 december 1989) is een Thaise golfprofessional. Ze debuteerde in 2006 op de Ladies Asian Golf Tour en in 2009 op de LPGA Tour. Loopbaan In 2006 ma...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) شيرمان أوستين معلومات شخصية الميلاد 10 أبريل 1983 (40 سنة)  لوس أنجلوس  مواطنة الولايات المتحدة  الحياة العملية المهنة موسيقي  تعديل مصدري - تعديل   ش...

 

Denton Localidad DentonLocalización de Denton en Gran MánchesterCoordenadas 53°27′19″N 2°06′44″O / 53.4554, -2.1122Entidad Localidad • País  Reino Unido • Nación constitutiva Inglaterra Inglaterra • Región Noroeste de Inglaterra • Condado Gran MánchesterHuso horario UTC±00:00Código postal M34Prefijo telefónico 0161[editar datos en Wikidata] Denton es una localidad situada en el condado de Gran Mánchester, en I...

Castelsardo Calthèddu, CastèdduSarduKomuneComune di CastelsardoLokasi Castelsardo di Provinsi SassariNegara ItaliaWilayah SardiniaProvinsiSassari (SS)Pemerintahan • Wali kotaAntonio Maria CapulaLuas • Total43,34 km2 (16,73 sq mi)Ketinggian114 m (374 ft)Populasi (2016) • Total5,954[1]Zona waktuUTC+1 (CET) • Musim panas (DST)UTC+2 (CEST)Kode pos07031Kode area telepon079Situs webhttp://www.comune.castels...

 

BrasilAsosiasiCBVKonfederasiCSV (Amerika Selatan)Pelatih José Roberto GuimarãesPeringkat FIVB? (per 31 Juli 2023)Kostum Kandang Tandang OlimpiadePenampilan10 (Pertama kali pada 1980)Hasil terbaik Emas : (Olimpiade Beijing 2008Kejuaraan DuniaPenampilan15 (Pertama kali pada 1956)Hasil terbaik Perak : (1994, 2006, 2010)www.cbv.com.br (Portugis) Halaman ini berisi artikel tentang tim putri. Untuk tim putra, lihat tim nasional bola voli putra Brasil. Tim nasional bola voli putri Brasil...

 

Defunct French automobile manufacturer (1898–1930) and car modelThis article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gobron-Brillié – news · newspapers · books · s...

American lawyer and diplomat (born 1959) For other people named John Sullivan, see John Sullivan (disambiguation). John J. SullivanOfficial portrait, 201710th United States Ambassador to RussiaIn officeFebruary 5, 2020 – September 4, 2022PresidentDonald TrumpJoe BidenPreceded byJon Huntsman Jr.Succeeded byLynne Tracy19th United States Deputy Secretary of StateIn officeMay 24, 2017 – December 20, 2019PresidentDonald TrumpPreceded byAntony BlinkenSucceeded byStephen Biegun...

 

Tunisian politician Farhat RajhiFarhat Rajhi in 2017Minister of the InteriorIn office27 January 2011 – 28 March 2011PresidentFouad Mebazaa (Acting)Prime MinisterMohamed GhannouchiBéji Caïd EssebsiPreceded byAhmed FriaaSucceeded byHabib Essid Personal detailsBorn (1952-12-29) December 29, 1952 (age 70)Tunis, TunisiaPolitical partyIndependentAlma materTunis University Farhat Rajhi (born 29 December 1952) is a Tunisian politician. He was interim minister of interior affairs bet...

 

Minolta SR-mountA cut-away Minolta XE showing its mountTypeBayonetTabs3Flange43.5 mmConnectorsautomatic diaphragm The Minolta SR-mount was the bayonet mounting system used in all 35 mm SLR cameras made by Minolta with interchangeable manual focusing lenses. Several iterations of the mounting were produced over the decades, and as a result, the mount itself was sometimes referred to by the name of the corresponding lens generation (f.e. MC, MD or X-600) instead. All lenses for these mounts are...

Main article: Weightlifting at the 2008 Summer Olympics Qualifying criteria A total of 260 athletes will be competing in the weightlifting events at the 2008 Summer Olympics in Beijing, People's Republic of China. Host nation The host nation shall directly qualify 6 men's and 4 women's places. World championships NOCs will achieve qualification places according to their position in the joint team classification by points adding those scored in the 2006 and in the 2007 World Championships, whe...

 

Park in Seattle, Washington, U.S. Be'er Sheva ParkBe'er Sheva Park, looking southeast over Lake WashingtonTypePlayground, picnic, water accessCoordinates47°31′28″N 122°15′49″W / 47.5244°N 122.2635°W / 47.5244; -122.2635Area25.5 acresCreated1905 (as Atlantic City Park)StatusOpenPathsBoardwalk and walking pathsTerrainFlat, waterfrontWaterLake WashingtonCollectionsMurals and art panelsFacilitiesPerformance stage Be'er Sheva Park is a small 25.5-acre (10.3 ...

 

1970 film This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Brancaleone at the Crusades – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) Brancaleone at the CrusadesDirected byMario MonicelliWritten byAgenore IncrocciFurio ScarpelliMario MonicelliProduced byMario Cecc...

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...

 

Untuk film 2011, lihat Captain America: The First Avenger. Untuk film 2014, lihat Captain America: The Winter Soldier. Captain AmericaCaptain America #109 (Jan. 1969).Seni oleh Jack Kirby dan Syd Shores.Informasi publikasiPenerbitMarvel ComicsPenampilan pertamaCaptain America Comics #1 (Maret 1941)Dibuat olehJoe Simon (penulis)Jack Kirby (ilustrasi)Informasi dalam ceritaAlter egoSteven Steve Rogers[1]Afiliasi tim All-Winners Squad Avengers Avengers Unity Squad Illuminati Invaders Land...

 

American personal trainer (born 1974) Jillian MichaelsMichaels in May 2018Born (1974-02-18) February 18, 1974 (age 49)Los Angeles, California, U.S.OccupationsPersonal trainerbusinesswomanmedia personalityauthorSpouse Deshanna Marie Minuto ​ ​(m. 2022)​Children2Websitejillianmichaels.com Jillian Michaels (born February 18, 1974) is an American fitness expert, certified nutritionist, businesswoman, media personality, and author.[1] She is best kno...

Bisacquino Entidad subnacional BisacquinoLocalización de Bisacquino en Italia Coordenadas 37°42′18″N 13°15′36″E / 37.705, 13.26Capital BisacquinoIdioma oficial ItalianoEntidad Comuna de Italia • País Italia • Región Sicilia • Provincia PalermoDirigentes   • Alcalde Filippo ContornoFracciones San BiagioMunicipios limítrofes Caltabellotta (AG), Campofiorito, Chiusa Sclafani, Contessa Entellina, Corleone, Giuliana, Monreale, Roccamen...

 

American politician For others of the same name, see James Bowen. James Barton Bowen (1815–1881) was Mayor of Madison, Wisconsin. He held the office from 1871 to 1872.[1] He was also the first homeopathic physician in Dane County, and president of the Park Savings Bank.[2] Bowen's home at 302 S. Mills St, just west of Meriter His former home, now known as the James B. Bowen House, is listed on the National Register of Historic Places.[3][4] References ^ James...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!