Type of positive composite integer
In mathematics , a Lucas–Carmichael number is a positive composite integer n such that
If p is a prime factor of n , then p + 1 is a factor of n + 1;
n is odd and square-free .
The first condition resembles Korselt's criterion for Carmichael numbers , where -1 is replaced with +1. The second condition eliminates from consideration some trivial cases like cubes of prime numbers, such as 8 or 27, which otherwise would be Lucas–Carmichael numbers (since n 3 + 1 = (n + 1)(n 2 − n + 1) is always divisible by n + 1).
They are named after Édouard Lucas and Robert Carmichael .
Properties
The smallest Lucas–Carmichael number is 399 = 3 × 7 × 19. It is easy to verify that 3+1, 7+1, and 19+1 are all factors of 399+1 = 400.
The smallest Lucas–Carmichael number with 4 factors is 8855 = 5 × 7 × 11 × 23.
The smallest Lucas–Carmichael number with 5 factors is 588455 = 5 × 7 × 17 × 23 × 43.
It is not known whether any Lucas–Carmichael number is also a Carmichael number .
Thomas Wright proved in 2016 that there are infinitely many Lucas–Carmichael numbers.[ 1] If we let
N
(
X
)
{\displaystyle N(X)}
denote the number of Lucas–Carmichael numbers up to
X
{\displaystyle X}
, Wright showed that there exists a positive constant
K
{\displaystyle K}
such that
N
(
X
)
≫ ≫ -->
X
K
/
(
log
-->
log
-->
log
-->
X
)
2
{\displaystyle N(X)\gg X^{K/\left(\log \log \log X\right)^{2}}}
.
List of Lucas–Carmichael numbers
The first few Lucas–Carmichael numbers (sequence A006972 in the OEIS ) and their prime factors are listed below.
399
= 3 × 7 × 19
935
= 5 × 11 × 17
2015
= 5 × 13 × 31
2915
= 5 × 11 × 53
4991
= 7 × 23 × 31
5719
= 7 × 19 × 43
7055
= 5 × 17 × 83
8855
= 5 × 7 × 11 × 23
12719
= 7 × 23 × 79
18095
= 5 × 7 × 11 × 47
20705
= 5 × 41 × 101
20999
= 11 × 23 × 83
22847
= 11 × 31 × 67
29315
= 5 × 11 × 13 × 41
31535
= 5 × 7 × 17 × 53
46079
= 11 × 59 × 71
51359
= 7 × 11 × 23 × 29
60059
= 19 × 29 × 109
63503
= 11 × 23 × 251
67199
= 11 × 41 × 149
73535
= 5 × 7 × 11 × 191
76751
= 23 × 47 × 71
80189
= 17 × 53 × 89
81719
= 11 × 17 × 19 × 23
88559
= 19 × 59 × 79
90287
= 17 × 47 × 113
104663
= 13 × 83 × 97
117215
= 5 × 7 × 17 × 197
120581
= 17 × 41 × 173
147455
= 5 × 7 × 11 × 383
152279
= 29 × 59 × 89
155819
= 19 × 59 × 139
162687
= 3 × 7 × 61 × 127
191807
= 7 × 11 × 47 × 53
194327
= 7 × 17 × 23 × 71
196559
= 11 × 107 × 167
214199
= 23 × 67 × 139
218735
= 5 × 11 × 41 × 97
230159
= 47 × 59 × 83
265895
= 5 × 7 × 71 × 107
357599
= 11 × 19 × 29 × 59
388079
= 23 × 47 × 359
390335
= 5 × 11 × 47 × 151
482143
= 31 × 103 × 151
588455
= 5 × 7 × 17 × 23 × 43
653939
= 11 × 13 × 17 × 269
663679
= 31 × 79 × 271
676799
= 19 × 179 × 199
709019
= 17 × 179 × 233
741311
= 53 × 71 × 197
760655
= 5 × 7 × 103 × 211
761039
= 17 × 89 × 503
776567
= 11 × 227 × 311
798215
= 5 × 11 × 23 × 631
880319
= 11 × 191 × 419
895679
= 17 × 19 × 47 × 59
913031
= 7 × 23 × 53 × 107
966239
= 31 × 71 × 439
966779
= 11 × 179 × 491
973559
= 29 × 59 × 569
1010735
= 5 × 11 × 17 × 23 × 47
1017359
= 7 × 23 × 71 × 89
1097459
= 11 × 19 × 59 × 89
1162349
= 29 × 149 × 269
1241099
= 19 × 83 × 787
1256759
= 7 × 17 × 59 × 179
1525499
= 53 × 107 × 269
1554119
= 7 × 53 × 59 × 71
1584599
= 37 × 113 × 379
1587599
= 13 × 97 × 1259
1659119
= 7 × 11 × 29 × 743
1707839
= 7 × 29 × 47 × 179
1710863
= 7 × 11 × 17 × 1307
1719119
= 47 × 79 × 463
1811687
= 23 × 227 × 347
1901735
= 5 × 11 × 71 × 487
1915199
= 11 × 13 × 59 × 227
1965599
= 79 × 139 × 179
2048255
= 5 × 11 × 167 × 223
2055095
= 5 × 7 × 71 × 827
2150819
= 11 × 19 × 41 × 251
2193119
= 17 × 23 × 71 × 79
2249999
= 19 × 79 × 1499
2276351
= 7 × 11 × 17 × 37 × 47
2416679
= 23 × 179 × 587
2581319
= 13 × 29 × 41 × 167
2647679
= 31 × 223 × 383
2756159
= 7 × 17 × 19 × 23 × 53
2924099
= 29 × 59 × 1709
3106799
= 29 × 149 × 719
3228119
= 19 × 23 × 83 × 89
3235967
= 7 × 17 × 71 × 383
3332999
= 19 × 23 × 29 × 263
3354695
= 5 × 17 × 61 × 647
3419999
= 11 × 29 × 71 × 151
3441239
= 109 × 131 × 241
3479111
= 83 × 167 × 251
3483479
= 19 × 139 × 1319
3700619
= 13 × 41 × 53 × 131
3704399
= 47 × 269 × 293
3741479
= 7 × 17 × 23 × 1367
4107455
= 5 × 11 × 17 × 23 × 191
4285439
= 89 × 179 × 269
4452839
= 37 × 151 × 797
4587839
= 53 × 107 × 809
4681247
= 47 × 103 × 967
4853759
= 19 × 23 × 29 × 383
4874639
= 7 × 11 × 29 × 37 × 59
5058719
= 59 × 179 × 479
5455799
= 29 × 419 × 449
5669279
= 7 × 11 × 17 × 61 × 71
5807759
= 83 × 167 × 419
6023039
= 11 × 29 × 79 × 239
6514199
= 43 × 197 × 769
6539819
= 11 × 13 × 19 × 29 × 83
6656399
= 29 × 89 × 2579
6730559
= 11 × 23 × 37 × 719
6959699
= 59 × 179 × 659
6994259
= 17 × 467 × 881
7110179
= 37 × 41 × 43 × 109
7127999
= 23 × 479 × 647
7234163
= 17 × 41 × 97 × 107
7274249
= 17 × 449 × 953
7366463
= 13 × 23 × 71 × 347
8159759
= 19 × 29 × 59 × 251
8164079
= 7 × 11 × 229 × 463
8421335
= 5 × 13 × 23 × 43 × 131
8699459
= 43 × 307 × 659
8734109
= 37 × 113 × 2089
9224279
= 53 × 269 × 647
9349919
= 19 × 29 × 71 × 239
9486399
= 3 × 13 × 79 × 3079
9572639
= 29 × 41 × 83 × 97
9694079
= 47 × 239 × 863
9868715
= 5 × 43 × 197 × 233
References
External links
Possessing a specific set of other numbers
Expressible via specific sums