Pronic number

A pronic number is a number that is the product of two consecutive integers, that is, a number of the form .[1] The study of these numbers dates back to Aristotle. They are also called oblong numbers, heteromecic numbers,[2] or rectangular numbers;[3] however, the term "rectangular number" has also been applied to the composite numbers.[4][5]

The first few pronic numbers are:

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 … (sequence A002378 in the OEIS).

Letting denote the pronic number , we have . Therefore, in discussing pronic numbers, we may assume that without loss of generality, a convention that is adopted in the following sections.

As figurate numbers

Twice a triangular number is a pronic number
The nth pronic number is n more than the nth square number

The pronic numbers were studied as figurate numbers alongside the triangular numbers and square numbers in Aristotle's Metaphysics,[2] and their discovery has been attributed much earlier to the Pythagoreans.[3] As a kind of figurate number, the pronic numbers are sometimes called oblong[2] because they are analogous to polygonal numbers in this way:[1]

* * * * *
* * *
* * * *
* * * *
* * * *
* * * * *
* * * * *
* * * * *
* * * * *
1 × 2 2 × 3 3 × 4 4 × 5

The nth pronic number is the sum of the first n even integers, and as such is twice the nth triangular number[1][2] and n more than the nth square number, as given by the alternative formula n2 + n for pronic numbers. Hence the nth pronic number and the nth square number (the sum of the first n odd integers) form a superparticular ratio:

Due to this ratio, the nth pronic number is at a radius of n and n + 1 from a perfect square, and the nth perfect square is at a radius of n from a pronic number. The nth pronic number is also the difference between the odd square (2n + 1)2 and the (n+1)st centered hexagonal number.

Since the number of off-diagonal entries in a square matrix is twice a triangular number, it is a pronic number.[6]

Sum of pronic numbers

The partial sum of the first n positive pronic numbers is twice the value of the nth tetrahedral number:

.

The sum of the reciprocals of the positive pronic numbers (excluding 0) is a telescoping series that sums to 1:[7]

.

The partial sum of the first n terms in this series is[7]

.

The alternating sum of the reciprocals of the positive pronic numbers (excluding 0) is a convergent series:

.

Additional properties

Pronic numbers are even, and 2 is the only prime pronic number. It is also the only pronic number in the Fibonacci sequence and the only pronic Lucas number.[8][9]

The arithmetic mean of two consecutive pronic numbers is a square number:

So there is a square between any two consecutive pronic numbers. It is unique, since

Another consequence of this chain of inequalities is the following property. If m is a pronic number, then the following holds:

The fact that consecutive integers are coprime and that a pronic number is the product of two consecutive integers leads to a number of properties. Each distinct prime factor of a pronic number is present in only one of the factors n or n + 1. Thus a pronic number is squarefree if and only if n and n + 1 are also squarefree. The number of distinct prime factors of a pronic number is the sum of the number of distinct prime factors of n and n + 1.

If 25 is appended to the decimal representation of any pronic number, the result is a square number, the square of a number ending on 5; for example, 625 = 252 and 1225 = 352. This is so because

.

The difference between two consecutive unit fractions is the reciprocal of a pronic number:[10]

References

  1. ^ a b c Conway, J. H.; Guy, R. K. (1996), The Book of Numbers, New York: Copernicus, Figure 2.15, p. 34.
  2. ^ a b c d Knorr, Wilbur Richard (1975), The evolution of the Euclidean elements, Dordrecht-Boston, Mass.: D. Reidel Publishing Co., pp. 144–150, ISBN 90-277-0509-7, MR 0472300.
  3. ^ a b Ben-Menahem, Ari (2009), Historical Encyclopedia of Natural and Mathematical Sciences, Volume 1, Springer reference, Springer-Verlag, p. 161, ISBN 9783540688310.
  4. ^ "Plutarch, De Iside et Osiride, section 42", www.perseus.tufts.edu, retrieved 16 April 2018
  5. ^ Higgins, Peter Michael (2008), Number Story: From Counting to Cryptography, Copernicus Books, p. 9, ISBN 9781848000018.
  6. ^ Rummel, Rudolf J. (1988), Applied Factor Analysis, Northwestern University Press, p. 319, ISBN 9780810108240.
  7. ^ a b Frantz, Marc (2010), "The telescoping series in perspective", in Diefenderfer, Caren L.; Nelsen, Roger B. (eds.), The Calculus Collection: A Resource for AP and Beyond, Classroom Resource Materials, Mathematical Association of America, pp. 467–468, ISBN 9780883857618.
  8. ^ McDaniel, Wayne L. (1998), "Pronic Lucas numbers" (PDF), Fibonacci Quarterly, 36 (1): 60–62, doi:10.1080/00150517.1998.12428962, MR 1605345, archived from the original (PDF) on 2017-07-05, retrieved 2011-05-21.
  9. ^ McDaniel, Wayne L. (1998), "Pronic Fibonacci numbers" (PDF), Fibonacci Quarterly, 36 (1): 56–59, doi:10.1080/00150517.1998.12428961, MR 1605341.
  10. ^ Meyer, David. "A Useful Mathematical Trick, Telescoping Series, and the Infinite Sum of the Reciprocals of the Triangular Numbers" (PDF). David Meyer's GitHub. p. 1. Retrieved 2024-11-26.

Read other articles:

17th-century English pirate For the English landowner and politician, see Robert Culliford (MP). This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Robert Culliford – news · newspapers · books · scholar · JSTOR (August 2017) Robert Culliford (c. 1666 – unknown; last name occasionally reported as Col...

 

Robert E. ParkLahir(1864-02-14)14 Februari 1864Harveyville, Kabupaten Luzerne, Pennsylvania, ASMeninggal7 Februari 1944(1944-02-07) (umur 79)Nashville, Tennessee, ASAlmamaterUniversitas HeidelbergUniversitas MichiganUniversitas HarvardUniversitas MinnesotaUniversitas Friedrich WilhelmDikenal atasEkologi manusiahubungan rasperilaku kolektifSuami/istriClara CahillAnakEdward Cahill ParkTheodosia Warner ParkMargaret Lucy Park RedfieldRobert Hiram ParkKarier ilmiahBidangSociologyInstitusiUniv...

 

'The Life of Henry the Fift' uit de First Folio Hendrik V (Engelse titel: Henry V) is een historisch stuk van William Shakespeare, geschreven in 1599. Het is gebaseerd op het leven van koning Hendrik V van Engeland. De gebeurtenissen in het stuk spelen zich af tijdens de Honderdjarige Oorlog, onmiddellijk voor en na de Slag bij Azincourt (Agincourt) van 1415. Henry V sluit Shakespeares tetralogie af waar ook Richard II, Henry IV, Part 1 en Henry IV, Part 2 deel van uitmaken. Bronnen Shakespea...

Artikel ini bukan mengenai Shoftim (parsyah) atau Mishpat Ivri. Musa Menerima Loh Batu (lukisan tahun 1868 karya João Zeferino da Costa) Mishpatim (מִּשְׁפָּטִים — Ibrani untuk hukum, kata kedua dari parsyah tersebut) adalah Bacaan Taurat Mingguan (פָּרָשָׁה, parashah) kedelapan belas dalam siklus bacaan Taurat Yahudi tahunan dan keenam dalam Kitab Keluaran. Parsyah tersebut berisi serangkaian hukum, yang beberapa cendekiawan sebut Kitab Kovenan. Bacaan tersebut melap...

 

Cet article est une ébauche concernant une localité lettonne. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Krāslava Craslau Héraldique Eglise catholique de Krāslava. Administration Pays Lettonie Maire Mečislavs Lukša Code postal LV-560(1–3) Démographie Population 9 114 hab.[1] (2016) Densité 1 060 hab./km2 Géographie Coordonnées 55° 53′ 00″ nord, 27° 10

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2020) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (...

هذا التصنيف مخصص لجمع مقالات البذور المتعلقة بصفحة لبنان. بإمكانك المساعدة في توسيع هذه المقالات وتطويرها. لإضافة مقالة إلى هذا التصنيف، استخدم {{بذرة لبنان}} بدلاً من {{بذرة}}. هذا التصنيف لا يظهر في صفحات أعضائه؛ حيث إنه مخصص لصيانة صفحات ويكيبيديا فقط.

 

August 1945 attacks in Japan during WWII Operation CenterboardPart of the Pacific War of World War IIAtomic bomb mushroom clouds over Hiroshima (left) and Nagasaki (right)TypeNuclear bombingLocationHiroshima and Nagasaki, JapanDate6 and 9 August 1945Executed by Manhattan Project 509th Composite Group: 1,770 U.S. CasualtiesHiroshima: 70,000–126,000 civilians killed 7,000–20,000 soldiers killed 12 Allied prisoners of war Nagasaki: 60,000–80,000 killed (within 4 months) 150+ soldiers ...

 

Untuk orang lain dengan nama yang sama, lihat Myint Swe. Myint SweMyint Swe mengambil sumpah jabatan pada 30 Maret 2016Presiden MyanmarPetahanaMulai menjabat 1 Februari 2021Pemimpin NegaraMin Aung HlaingPendahuluWin MyintMasa jabatan21 Maret 2018 – 30 Maret 2018Penasihat NegaraAung San Suu KyiPendahuluHtin KyawPenggantiWin MyintWakil Presiden Pertama Myanmar ke-3PetahanaMulai menjabat 30 Maret 2016Menjabat bersama Henry Van ThioPresidenHtin KyawDiri sendiri (Penjaba...

Kedung LumbuKelurahanPeta lokasi Kelurahan Kedung LumbuNegara IndonesiaProvinsiJawa TengahKotaSurakartaKecamatanPasar KliwonKode Kemendagri33.72.03.1007 Kode BPS3372030008 Kedung Lumbu (Jawa: ꦏꦼꦝꦸꦁ​ꦭꦸꦩ꧀ꦧꦸ, translit. Kedhung Lumbu) adalah sebuah kelurahan di kecamatan Pasar Kliwon, Surakarta. Kelurahan ini memiliki kode pos 57133. Pada tahun 2020, kelurahan ini berpenduduk 5.469 jiwa. Asal nama Nama kelurahan ini diberikan oleh para penggawa keraton Suraka...

 

Keluarga Anies BaswedanKelompok etnisArab dan JawaTempat asalYogyakarta, IndonesiaAnggotaAnies BaswedanFery FarhatiMutiara AnnisaMikail AziziKaisar HakamIsmail HakimAli Saleh AlhuraibyAnggota terkaitAbdurrahman BaswedanAliyah RasyidKeluarga terkaitKeluarga Baswedan Keluarga Anies Baswedan adalah sekelompok individu yang memiliki hubungan darah atau keluarga dengan Anies Baswedan, termasuk istri, anak, menantu, adik, orang tua, kakek-nenek, paman-bibi, maupun hubungan keluarga yang terikat sec...

 

For the American guitarist, see Mark Wilson (journalist and musician). For other people, see Mark Wilson. Mark WilsonPerforming with Jet in 2004Background informationBirth nameMark Andrew WilsonBornAugust 1980 (age 43)Geelong, Victoria, AustraliaGenresIndie rockOccupation(s)MusicianInstrument(s) Bass piano harmonica backing vocals percussion synthesiser sampler Years active 2001–2012 2016–present Musical artist Mark Andrew Wilson (born August 1980) is an Australian musician, ori...

Companhia Docas do Estado da Paraíba Tipo Mista[1] Fundação 4 de fevereiro de 1998[2] Sede Cabedelo Paraíba Pessoas-chave Wilbur Jácome (presidente)[3] Produtos Administração portuária Website oficial Porto de Cabedelo A Companhia Docas do Estado da Paraíba (ou Docas-PB, em forma reduzida)[4] é uma autoridade portuária que tem como finalidade administrar e explorar o Porto de Cabedelo.[2] Com sede em Cabedelo, no estado brasileiro da Paraíba, a Docas–PB é uma empresa do Go...

 

An Allied estimate of Japanese units in Borneo at the end of April 1945vteBorneo campaign Agas Semut Tarakan North Borneo Labuan Beaufort Balikpapan Order of battle A map showing the progress of the Borneo campaign This is the complete order of battle of Allied and Japanese forces during the Borneo campaign of 1945. As the campaign was fought in three geographically separate areas and the same air and naval units supported more than one of these battles the order of battle is split into the t...

 

Harold Beverage1915 yearbook photoBorn14 October 1893North Haven, MEDied27 January 1993(1993-01-27) (aged 99)Port Jefferson, NYNationalityAmericanAlma materUniversity of MaineAwardsIEEE Medal of Honor (1945)Scientific careerFieldsElectrical engineeringInstitutionsRCA Harold Henry Bev Beverage (October 14, 1893 – January 27, 1993) was an inventor and researcher in electrical engineering. He is known for his invention and development of the wave antenna, which came to be known as th...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may contain an excessive amount of intricate detail that may interest only a particular audience. Please help by spinning off or relocating any relevant information, and removing excessive detail that may be against Wikipedia's inclusion policy. (November 2022) (Learn how and when to remove this template message) This article ne...

 

Village in Hampshire, England Human settlement in EnglandLyndhurstLyndhurst High Street, February 2020LyndhurstLocation within HampshirePopulation2,973 (2001 UK census) 3,029 (2011 Census)[1]DistrictNew ForestShire countyHampshireRegionSouth EastCountryEnglandSovereign stateUnited KingdomPost townLyndhurstPostcode districtSO40, SO43Dialling code023PoliceHampshire and Isle of WightFireHampshire and Isle of WightAmbulanceSouth Central UK ParliamentNew Fores...

 

Shopping mall in Pudong, Shanghai, China This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this template message) The River Mall世博源LocationPudong, ...

موراي روثبورد (بالإنجليزية: Murray Rothbard)‏  معلومات شخصية اسم الولادة (بالإنجليزية: Murray Newton Rothbard)‏  الميلاد 2 مارس 1926(1926-03-02)مدينة نيويورك الوفاة 7 يناير 1995 (68 سنة)مدينة نيويورك سبب الوفاة نوبة قلبية  مواطنة الولايات المتحدة  الديانة إلحاد الحياة العملية المدرسة الأم ج...

 

Railway station in Kokura Kita ward, Kitakyushu City, Fukuoka Prefecture, Japan Katano Station片野駅Station buildingGeneral informationLocationKokurakita-ku, Kitakyushu, Fukuoka Prefecture, JapanOperated byKitakyushu Urban Monorail Co. Ltd.Line(s)Kitakyushu MonorailPlatforms2 side platformsTracks2ConstructionStructure typeElevatedOther informationStation code05HistoryOpened9 January 1985; 38 years ago (9 January 1985)Services Preceding station Kitakyushu Monorail Following sta...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!