Share to: share facebook share twitter share wa share telegram print page

EPROM

An EPROM: the Texas Instruments TMS27C040, a CMOS chip with 4 megabits of storage and 8-bit output (shown here in a 600-mil ceramic dual-in-line package). The TMS27C040 operates at 5 volts, but must be programmed at 13 volts.[1]

An EPROM (rarely EROM), or erasable programmable read-only memory, is a type of programmable read-only memory (PROM) chip that retains its data when its power supply is switched off. Computer memory that can retrieve stored data after a power supply has been turned off and back on is called non-volatile. It is an array of floating-gate transistors individually programmed by an electronic device that supplies higher voltages than those normally used in digital circuits. Once programmed, an EPROM can be erased by exposing it to strong ultraviolet (UV) light source (such as from a mercury-vapor lamp). EPROMs are easily recognizable by the transparent fused quartz (or on later models resin) window on the top of the package, through which the silicon chip is visible, and which permits exposure to ultraviolet light during erasing.[2] It was invented by Dov Frohman in 1971.[3]

Operation

An Intel 1702A EPROM, one of the earliest EPROM types (1971), 256 by 8 bit. The small quartz window admits UV light for erasure.

Development of the EPROM memory cell started with investigation of faulty integrated circuits where the gate connections of transistors had broken. Stored charge on these isolated gates changes their threshold voltage.

In 1957, Frosch and Derick were able to manufacture the first silicon dioxide field effect transistors at Bell Labs, the first transistors in which drain and source were adjacent at the surface.[4] Following the invention of the MOSFET at Bell Labs, Frank Wanlass studied MOSFET structures in the early 1960s. In 1963, he noted the movement of charge through oxide onto a gate. While he did not pursue it, this idea would later become the basis for EPROM technology.[5]

In 1967, Dawon Kahng and Simon Min Sze at Bell Labs proposed that the floating gate of a MOSFET could be used for the cell of a reprogrammable ROM (read-only memory).[3] Building on this concept, Dov Frohman of Intel invented EPROM in 1971,[3] and was awarded U.S. patent 3,660,819 in 1972. Frohman designed the Intel 1702, a 2048-bit EPROM, which was announced by Intel in 1971.[3]

Each storage location of an EPROM consists of a single field-effect transistor. Each field-effect transistor consists of a channel in the semiconductor body of the device. Source and drain contacts are made to regions at the end of the channel. An insulating layer of oxide is grown over the channel, then a conductive (silicon or aluminum) gate electrode is deposited, and a further thick layer of oxide is deposited over the gate electrode. The floating-gate electrode has no connections to other parts of the integrated circuit and is completely insulated by the surrounding layers of oxide. A control gate electrode is deposited and further oxide covers it.[6]

To retrieve data from the EPROM, the address represented by the values at the address pins of the EPROM is decoded and used to connect one word (usually an 8-bit byte) of storage to the output buffer amplifiers. Each bit of the word is a 1 or 0, depending on the storage transistor being switched on or off, conducting or non-conducting.

A cross-section of a floating-gate transistor

The switching state of the field-effect transistor is controlled by the voltage on the control gate of the transistor. Presence of a voltage on this gate creates a conductive channel in the transistor, switching it on. In effect, the stored charge on the floating gate allows the threshold voltage of the transistor to be programmed.

Storing data in the memory requires selecting a given address and applying a higher voltage to the transistors. This creates an avalanche discharge of electrons, which have enough energy to pass through the insulating oxide layer and accumulate on the gate electrode. When the high voltage is removed, the electrons are trapped on the electrode.[7] Because of the high insulation value of the silicon oxide surrounding the gate, the stored charge cannot readily leak away and the data can be retained for decades.

The programming process is not electrically reversible. To erase the data stored in the array of transistors, ultraviolet light is directed onto the die. Photons of the UV light cause ionization within the silicon oxide, which allows the stored charge on the floating gate to dissipate. Since the whole memory array is exposed, all the memory is erased at the same time. The process takes several minutes for UV lamps of convenient sizes; sunlight would erase a chip in weeks, and indoor fluorescent lighting over several years.[8] Generally, the EPROMs must be removed from equipment to be erased, since it is not usually practical to build in a UV lamp to erase parts in-circuit. Electrically Erasable Programmable Read-Only Memory (EEPROM) was developed to provide an electrical erase function and has now mostly displaced ultraviolet-erased parts.

Details

Atmel AT27C010 - an OTP EPROM

As the quartz window is expensive to make, OTP (one-time programmable) chips were introduced; here, the die is mounted in an opaque package so it cannot be erased after programming – this also eliminates the need to test the erase function, further reducing cost. OTP versions of both EPROMs and EPROM-based microcontrollers are manufactured. However, OTP EPROM (whether separate or part of a larger chip) is being increasingly replaced by EEPROM for small sizes, where the cell cost isn't too important, and flash for larger sizes.

A programmed EPROM retains its data for a minimum of ten to twenty years,[9] with many still retaining data after 35 or more years, and can be read an unlimited number of times without affecting the lifetime. The erasing window must be kept covered with an opaque label to prevent accidental erasure by the UV found in sunlight or camera flashes. Old PC BIOS chips were often EPROMs, and the erasing window was often covered with an adhesive label containing the BIOS publisher's name, the BIOS revision, and a copyright notice. Often this label was foil-backed to ensure its opacity to UV.

Erasure of the EPROM begins to occur with wavelengths shorter than 400 nm. Exposure time for sunlight of one week or three years for room fluorescent lighting may cause erasure. The recommended erasure procedure is exposure to UV light at 253.7 nm of at least 15 Ws/cm2, usually achieved in 20 to 30 minutes with the lamp at a distance of about 2.5 cm.[10]

Erasure can also be accomplished with X-rays:

Erasure, however, has to be accomplished by non-electrical methods, since the gate electrode is not accessible electrically. Shining ultraviolet light on any part of an unpackaged device causes a photocurrent to flow from the floating gate back to the silicon substrate, thereby discharging the gate to its initial, uncharged condition (photoelectric effect). This method of erasure allows complete testing and correction of a complex memory array before the package is finally sealed. Once the package is sealed, information can still be erased by exposing it to X radiation in excess of 5*104 rads,[a] a dose which is easily attained with commercial X-ray generators.[11]

In other words, to erase your EPROM, you would first have to X-ray it and then put it in an oven at about 600 degrees Celsius (to anneal semiconductor alterations caused by the X-rays). The effects of this process on the reliability of the part would have required extensive testing so they decided on the window instead.[12]

EPROMs have a limited but large number of erase cycles; the silicon dioxide around the gates accumulates damage from each cycle, making the chip unreliable after several thousand cycles. EPROM programming is slow compared to other forms of memory. Because higher-density parts have little exposed oxide between the layers of interconnects and gate, ultraviolet erasing becomes less practical for very large memories. Even dust inside the package can prevent some cells from being erased.[13]

Application

For large volumes of parts (thousands of pieces or more), mask-programmed ROMs are the lowest cost devices to produce. However, these require many weeks lead time to make, since the artwork or design in an IC mask layer or photomask must be altered to store data on the ROMs. Initially, it was thought that the EPROM would be too expensive for mass production use and that it would be confined to development only. It was soon found that small-volume production was economical with EPROM parts, particularly when the advantage of rapid upgrades of firmware was considered.

Some microcontrollers, from before the era of EEPROMs and flash memory, use an on-chip EPROM to store their program. Such microcontrollers include some versions of the Intel 8048, the Freescale 68HC11, and the "C" versions of the PIC microcontroller. Like EPROM chips, such microcontrollers came in windowed (expensive) versions that were used for debugging and program development. The same chip came in (somewhat cheaper) opaque OTP packages for production. Leaving the die of such a chip exposed to light can also change behavior in unexpected ways when moving from a windowed part used for development to a non-windowed part for production.

EPROM generations, sizes and types

The first generation 1702 devices were fabricated with the p-MOS technology. They were powered with VCC = VBB = +5 V and VDD = VGG = -9 V in Read mode, and with VDD = VGG = -47 V in Programming mode.[14][15]

The second generation 2704/2708 devices switched to n-MOS technology and to three-rail VCC = +5 V, VBB = -5 V, VDD = +12 V power supply with VPP = 12 V and a +25 V pulse in Programming mode.

The n-MOS technology evolution introduced single-rail VCC = +5 V power supply and single VPP = +25 V[16] programming voltage without pulse in the third generation. The unneeded VBB and VDD pins were reused for additional address bits allowing larger capacities (2716/2732) in the same 24-pin package, and even larger capacities with larger packages. Later the decreased cost of the CMOS technology allowed the same devices to be fabricated using it, adding the letter "C" to the device numbers (27xx(x) are n-MOS and 27Cxx(x) are CMOS).

While parts of the same size from different manufacturers are compatible in read mode, different manufacturers added different and sometimes multiple programming modes leading to subtle differences in the programming process. This prompted larger capacity devices to introduce a "signature mode", allowing the manufacturer and device to be identified by the EPROM programmer. It was implemented by forcing +12 V on pin A9 and reading out two bytes of data. However, as this was not universal, programmer software also would allow manual setting of the manufacturer and device type of the chip to ensure proper programming.[17]

EPROM Type Year Size — bits Size — bytes Length (hex) Last address (hex) Technology
1702, 1702A 1971 2 Kbit 256 100 FF PMOS
2704 1975 4 Kbit 512 200 1FF NMOS
2708 1975 8 Kbit 1 KB 400 3FF NMOS
2716, 27C16, TMS2716, 2516 1977 16 Kbit 2 KB 800 7FF NMOS/CMOS
2732, 27C32, 2532 1979 32 Kbit 4 KB 1000 FFF NMOS/CMOS
2764, 27C64, 2564 64 Kbit 8 KB 2000 1FFF NMOS/CMOS
27128, 27C128 128 Kbit 16 KB 4000 3FFF NMOS/CMOS
27256, 27C256 256 Kbit 32 KB 8000 7FFF NMOS/CMOS
27512, 27C512 512 Kbit 64 KB 10000 FFFF NMOS/CMOS
27C010, 27C100 1 Mbit 128 KB 20000 1FFFF CMOS
27C020 2 Mbit 256 KB 40000 3FFFF CMOS
27C040, 27C400, 27C4001 4 Mbit 512 KB 80000 7FFFF CMOS
27C080 8 Mbit 1 MB 100000 FFFFF CMOS
27C160 16 Mbit 2 MB 200000 1FFFFF CMOS
27C320, 27C322 32 Mbit 4 MB 400000 3FFFFF CMOS
EEPROM 8kbit
K573RF1
EPROM 8kbit - detail of 4 bits

See also

Notes

  1. ^ 500 J/kg

References

  1. ^ Texas Instruments (1997), TMS27C040 524,288 BY 8-BIT UV ERASABLE TMS27PC040 524,288 BY 8-BIT PROGRAMMABLE READ-ONLY MEMORY
  2. ^ "CPU History - EPROMs". www.cpushack.com. Retrieved 2021-05-12.
  3. ^ a b c d "1971: Reusable semiconductor ROM introduced". Computer History Museum. Retrieved 19 June 2019.
  4. ^ Frosch, C. J.; Derick, L (1957). "Surface Protection and Selective Masking during Diffusion in Silicon". Journal of the Electrochemical Society. 104 (9): 547. doi:10.1149/1.2428650.
  5. ^ "People". The Silicon Engine. Computer History Museum. Retrieved 17 August 2019.
  6. ^ Sah 1991, p. 639.
  7. ^ Oklobdzija, Vojin G. (2008). Digital Design and Fabrication. CRC Press. pp. 5–17. ISBN 978-0-8493-8602-2.
  8. ^ Ayers, John E (2004), Digital integrated circuits: analysis and design, CRC Press, p. 591, ISBN 0-8493-1951-X.
  9. ^ Horowitz, Paul; Hill, Winfield (1989), The Art of Electronics (2nd ed.), Cambridge: Cambridge University Press, p. 817, ISBN 0-521-37095-7.
  10. ^ "M27C512 Datasheet" (PDF). Archived (PDF) from the original on 2018-09-06. Retrieved 2018-10-07.
  11. ^ Frohman, Dov (May 10, 1971), Electronics Magazine (article).
  12. ^ Margolin, J (May 8, 2009). "EPROM"..
  13. ^ Sah 1991, p. 640.
  14. ^ "Intel 1702A 2K (256 x 8) UV Erasable PROM" (PDF).
  15. ^ "AMD Am1702A 256-Word by 8-Bit Programmable Read Only Memory" (PDF). Archived from the original (PDF) on 2018-01-19. Retrieved 2018-01-19.
  16. ^ "16K (2K x 8) UV ERASABLE PROM" (PDF). amigan.yatho.com. Intel. Archived from the original (PDF) on 13 September 2020. Retrieved 18 April 2020.
  17. ^ U.S. International Trade Commission, ed. (October 1998). Certain EPROM, EEPROM, Flash Memory and Flash Microcontroller Semiconductor Devices and Products Containing Same, Inv. 337-TA-395. Diane Publishing. pp. 51–72. ISBN 1-4289-5721-9. The details of SEEQ's Silicon Signature method of a device programmer reading an EPROM's ID.

Bibliography

  • Sah, Chih-Tang (1991), Fundamentals of solid-state electronics, World Scientific, ISBN 981-02-0637-2.

Read other articles:

Uniqloユニクロ Tipo Filial participadaIndustria ModaForma legal kabushiki gaishaFundación 2 de junio de 1984Fundador Tadashi Yanai Sede central Tokio, JapónPersonas clave Tadashi Yanai (presidente y CEO)Productos Ropa, complementosPropietario Tadashi YanaiEmpresa matriz Fast RetailingSitio web www.uniqlo.com/es[editar datos en Wikidata] Uniqlo (en japonés: 株式会社ユニクロ, En alfabeto latino: Kabushiki-gaishaa Yunikuro ?) es una cadena japonesa de tiendas de ropa y c...

Halaman ini berisi artikel tentang provinsi. Untuk kota bernama sama, lihat Kota Jambi. Untuk kegunaan lain, lihat Jambi (disambiguasi). Jambi DjambiProvinsiTranskripsi bahasa daerah • JawiجمبيDari atas, kiri ke kanan: Kantor Gubernur Jambi, Candi Muaro Jambi, Gunung Kerinci, Anjungan Jambi di TMII, Geopark Merangin, Gentala Arasy, dan Danau Kerinci BenderaLambangJulukan: Bumi Melayu JambiMotto: Sepucuk Jambi sembilan lurah(Melayu) Wilayah Jambi yang dahulu diba...

Chain of water parks AquaticaIndustryWater parksFoundedOrlando, Florida (March 1, 2008; 15 years ago (2008-03-01))Number of locations2Area servedUnited StatesOwnerSeaWorld Parks & EntertainmentWebsiteAquatica OrlandoAquatica San Antonio Aquatica is a chain of water parks owned and operated by SeaWorld Parks & Entertainment. Aquatica parks are operating in Orlando, Florida and San Antonio, Texas. History Aquatica Orlando's Dolphin Plunge water slides SeaWorld Orlando ...

Olympic canoeing event Men's C-2 1000 metresat the Games of the XXXII OlympiadCanoeing pictogramVenueSea Forest WaterwayDates2 August 2021 (heats and quarterfinal)3 August 2021 (semifinal & final)Competitors28 (14 boats) from 14 nationsWinning time3:24.995Medalists Serguey TorresFernando Jorge  Cuba Liu HaoZheng Pengfei  China Sebastian BrendelTim Hecker  Germany← 20162024 → Canoeing at the2020 Summer OlympicsList of canoeistsQualificationSla...

Opera by Gioachino Rossini L'italiana in AlgeriDramma giocoso by Gioachino RossiniPortrait of the composerTranslationThe Italian Girl in AlgiersLibrettistAngelo AnelliLanguageItalianPremiere22 May 1813 (1813-05-22)Teatro San Benedetto, Venice L'italiana in Algeri (Italian pronunciation: [litaˈljaːna in alˈdʒɛːri]; The Italian Girl in Algiers) is an operatic dramma giocoso in two acts by Gioachino Rossini to an Italian libretto by Angelo Anelli, based on his earlie...

American food service equipment manufacturer Taylor CompanyFormerlyTaylor Freezer CorporationIndustryRetail food processing equipment manufacturingFounded1926HeadquartersRockton, IllinoisParentMiddlebyWebsitetaylor-company.com Taylor Company, previously known as Taylor Freezer Corporation, is an American manufacturer of food service equipment located in Rockton, Illinois.[1] They are known as the supplier and maker of several machines that McDonald's uses, including their grills and m...

Hieronder volgt een lijst van landen van de wereld in 1993. Staatkundige kaart van de wereld in 1993 vanaf de onafhankelijkheid van Eritrea Uitleg Eind 1992 waren er 187 onafhankelijke staten die door een ruime meerderheid van de overige staten erkend werden: de 178 leden van de Verenigde Naties alsmede Andorra[1], Joegoslavië, Kiribati, Monaco[2], Nauru, Tonga, Tuvalu, Vaticaanstad en Zwitserland. Op 1 januari 1993 werd Tsjecho-Slowakije opgeheven en opgesplitst in Tsjechië...

Samsudin AnggiluliS.E.Bupati Sorong Selatan ke-2PetahanaMulai menjabat 24 Maret 2016PresidenJoko WidodoGubernurAbraham Octavianus Atururi(Gubernur Papua Barat) Nathaniel Mandacan(Plh. Gubernur Papua Barat) Eko Subowo(Pj. Gubernur Papua Barat)Dominggus Mandacan(Gubernur Papua Barat)Paulus Waterpauw(Pj. Gubernur Papua Barat)Muhammad Musa'ad(Pj. Gubernur Papua Barat Daya)WakilMartinus SalamukPendahuluOtto IhalauwWakil Bupati Sorong Selatan ke-2Masa jabatan15 November 2010 –...

Peta menunjukkan lokasi Taytay Data sensus penduduk di Taytay Tahun Populasi Persentase 1995144.748—2000198.1836.97%2007262.4853.95% Taytay adalah munisipalitas yang terletak di provinsi Rizal, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 306.036 jiwa dan 60.051 rumah tangga. Pembagian wilayah Secara administratif Taytay terbagi menjadi 5 barangay, yaitu: Nama barangay Jumlah penduduk Kepala pemerintahan Dolores (Pob.) 59,914 Jhune Macabuhay Muzon 23,837 Aniel Cruz...

Peta menunjukkan lokasi Cawayan Cawayan adalah munisipalitas yang terletak di provinsi Masbate, Filipina. Pada tahun 2010, munisipalitas ini memiliki populasi sebesar 59.658 jiwa dan 12.783 rumah tangga. Pembagian wilayah Secara administratif Cawayan terbagi menjadi 37 barangay, yaitu: Begia Cabayugan Cabungahan Calapayan Calumpang Dalipe Divisoria Guiom Gilotongan Itombato Libertad Looc Mactan Madbad R.M. Magbalon (Bebihan) Mahayahay Maihao Malbug Naro Pananawan Poblacion Pulot Recodo San Jo...

American college basketball season 1954–55 North Carolina Tar Heels men's basketballConferenceAtlantic Coast ConferenceRecord10–11 (8–6 ACC)Head coachFrank McGuireHome arenaWoollen GymnasiumSeasons← 1953–541955–56 → In the 1954–1955 season, the North Carolina Tar Heels men's basketball team competed in a total of twenty-one games and finished with a record of 10–11. The team finished the season in sixth place in the Atlantic Coast Conference. Sche...

French footballer François Bourbotte Bourbotte in 1938Personal informationDate of birth 24 February 1913Place of birth Loison-sous-Lens, FranceDate of death 15 December 1972(1972-12-15) (aged 59)Position(s) Defender, midfielderSenior career*Years Team Apps (Gls)1932–1934 Bully 1934–1939 SC Fives 1939–1940 Excelsior AC Roubaix 1940–1943 SC Fives 1943–1944 Lille-Flandres [fr] 1944–1947 Lille 1947–1949 Armentières International career1937–1942 France 17 (0)Man...

Jacobo Francisco Fitz-James Stuart, II duque de Berwick Información personalNombre en español Diego Francisco Stuart Fitzjames, de Liria y Jérica Nacimiento 21 de octubre de 1696 Saint-Germain-en-Laye, FranciaFallecimiento 2 de junio de 1738 (41 años)Napoles, ItaliaNacionalidad Británica y españolaReligión Catolicismo FamiliaFamilia Casa de Fitz-James Stuart Padres James Fitz-James Stuart Honora Burke Cónyuge Catalina Ventura Colón de Portugal y Ayala-Toledo (desde 1716) Hijos J...

1970 film by Tapan Sinha Sagina MahatoFilm posterDirected byTapan SinhaWritten byGour Kishore GhoshProduced byJ. K. KapurHemen GangulyStarringDilip KumarSaira BanuMusic byAnup GhoshalAssistantTapan SinhaRelease date14 April 1970 (1970-04-14)Running time148 minutesCountryIndiaLanguageBengali Sagina Mahato is a 1970 Bengali film produced by Shri J. K. Kapur and directed by Tapan Sinha. The film stars Dilip Kumar and Saira Banu. The film is based on the true story of the labour mo...

Little Tin Soldier redirects here. For the Small Faces hit, see Tin Soldier (song). 1969 studio album by Barbra StreisandWhat About Today?Studio album by Barbra StreisandReleasedJuly 1969 (1969-07)RecordedMarch 16, 1968; May 22, 1968; June 23, 1968; February 8, 1969; May 14 & 22, 1969GenrePopLength34:22LabelColumbiaProducerWally GoldBarbra Streisand chronology A Happening in Central Park(1968) What About Today?(1969) Hello, Dolly!(1969) Singles from What About Today? The...

2007 Philippine television show Mga Kuwento ni Lola BasyangTitle cardGenre Drama Fantasy Written by Gina Marissa Tagasa-Gil Agnes de Guzman Dinno Erece Adrian Ho Directed by Argel Joseph Don Michael Perez Starring Manilyn Reynes Paul Salas Country of originPhilippinesOriginal languageTagalogNo. of seasons2No. of episodes26 (list of episodes)ProductionExecutive producerJoseph BuncalanProduction locationPhilippinesCamera setupMultiple-camera setupRunning time45 minutesProduction companyGMA Ente...

156 주안Juan Juan stationKorean nameHangul주안역Hanja朱安驛Revised RomanizationJuan-yeokMcCune–ReischauerChuan-yŏk General informationLocation125 Juan 5-dong, 95-19 Juanno, Nam-gu, Incheon[1][2]Operated byKorail, Incheon Transit CorporationLine(s)     Line 1     Incheon Line 2Platforms4Tracks6ConstructionStructure typeAboveground/UndergroundKey dates18 Sep 1899[1][2]15 Aug 1974    ...

Atty Suharti TochijaWali Kota Cimahi ke-2Masa jabatan22 Oktober 2012 – 8 Juni 2017Presiden Susilo Bambang Yudhoyono Joko Widodo GubernurAhmad HeryawanPendahuluItoc TochijaPenggantiDrs. H. Sudiarto, S.E., Ak. (Plt. Wali Kota) Informasi pribadiLahir24 November 1955 (umur 68)Cimahi, Jawa Barat, IndonesiaKebangsaanIndonesiaPartai politik-Suami/istriItoc TochijaSunting kotak info • L • B Hj.Atty Suharti Tochija, S.E (lahir 24 November 1955) adalah wali kota Cimahi...

ジャック・シュヴァリエ級 予想完成図基本情報艦種 補給艦建造所 Template:Glagicon運用者  フランス海軍建造期間 2021年 -就役期間 2023年 -計画数 4隻原型艦 ブルカーノ級前級 デュランス級次級 最新要目軽荷排水量 16,000トン満載排水量 31,000トン全長 194m最大幅 27.4m吃水 9m推進器 ディーゼル電気推進速力 20ノット航続距離 7,000海里(13,000km)/16ノット航海日数 30日搭載能力 13,...

Japanese engineer, video game producer, and professor (1943–2021) Masayuki Uemura上村雅之Uemura in 1985, testing the FamicomBorn(1943-06-20)20 June 1943Tokyo, Japan[1]Died6 December 2021(2021-12-06) (aged 78)Akita City, JapanAlma materChiba Institute of Technology[2]Occupation(s)General Manager at Nintendo R&D2Professor at Ritsumeikan University Masayuki Uemura (上村雅之, Uemura Masayuki, 20 June 1943 – 6 December 2021) was a Japanese engineer, video ...

Kembali kehalaman sebelumnya