Quantum memory

In quantum computing, quantum memory is the quantum-mechanical version of ordinary computer memory. Whereas ordinary memory stores information as binary states (represented by "1"s and "0"s), quantum memory stores a quantum state for later retrieval. These states hold useful computational information known as qubits. Unlike the classical memory of everyday computers, the states stored in quantum memory can be in a quantum superposition, giving much more practical flexibility in quantum algorithms than classical information storage.

Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that can match the various processes in a quantum computer, a quantum gate that maintains the identity of any state, and a mechanism for converting predetermined photons into on-demand photons. Quantum memory can be used in many aspects, such as quantum computing and quantum communication. Continuous research and experiments have enabled quantum memory to realize the storage of qubits.[1]

Background and history

The interaction of quantum radiation with multiple particles has sparked scientific interest over the past decade.[needs context] Quantum memory is one such field, mapping the quantum state of light onto a group of atoms and then restoring it to its original shape. Quantum memory is a key element in information processing, such as optical quantum computing and quantum communication, while opening a new way for the foundation of light-atom interaction. However, restoring the quantum state of light is no easy task. While impressive progress has been made, researchers are still working to make it happen.[2]

Quantum memory based on the quantum exchange to store photon qubits has been demonstrated to be possible. Kessel and Moiseev[3] discussed quantum storage in the single photon state in 1993. The experiment was analyzed in 1998 and demonstrated in 2003. In summary, the study of quantum storage in the single photon state can be regarded as the product of the classical optical data storage technology proposed in 1979 and 1982, an idea inspired by the high density of data storage in the mid-1970s[citation needed]. Optical data storage can be achieved by using absorbers to absorb different frequencies of light, which are then directed to beam space points and stored.

Types

Atomic Gas Quantum Memory

Normal, classical optical signals are transmitted by varying the amplitude of light. In this case, a piece of paper, or a computer hard disk, can be used to store information on the lamp[clarification needed]. In the quantum information scenario, however, the information may be encoded according to the amplitude and phase of the light. For some signals, you cannot measure both the amplitude and phase of the light without interfering with the signal. To store quantum information, light itself needs to be stored without being measured. An atomic gas quantum memory is recording the state of light into the atomic cloud. When light's information is stored by atoms, relative amplitude and phase of light is mapped to atoms and can be retrieved on-demand.[4]

Solid Quantum Memory

In classical computing, memory is a trivial resource that can be replicated in long-lived memory hardware and retrieved later for further processing. In quantum computing, this is forbidden because, according to the no clone theorem, any quantum state cannot be reproduced completely. Therefore, in the absence of quantum error correction, the storage of qubits is limited by the internal coherence time of the physical qubits holding the information. "Quantum memory" beyond the given physical qubit storage limits will be a quantum information transmission to "storing qubits" not easily affected by environmental noise and other factors. The information would later be transferred back to the preferred "process qubits" to allow rapid operations or reads.[5]

Discovery

Optical quantum memory is usually used to detect and store single photon quantum states. However, producing efficient memory of this kind is still a huge challenge for current science. A single photon is so low in energy as to be lost in a complex light background. These problems have long kept quantum storage rates below 50%. A team led by professor Du Shengwang of the department of physics at the Hong Kong University of science and technology[6] and William Mong Institute of Nano Science and Technology at HKUST[7] has found a way to increase the efficiency of optical quantum memory to more than 85 percent. The discovery also brings the popularity of quantum computers closer to reality. At the same time, the quantum memory can also be used as a repeater in the quantum network, which lays the foundation for the quantum Internet.

Research and application

Quantum memory is an important component of quantum information processing applications such as quantum network, quantum repeater, linear optical quantum computation or long-distance quantum communication.[8]

Optical data storage has been an important research topic for many years. Its most interesting function is the use of the laws of quantum physics to protect data from theft, through quantum computing and quantum cryptography unconditionally guaranteed communication security.[9]

They allow particles to be superimposed and in a superposition state, which means they can represent multiple combinations at the same time. These particles are called quantum bits, or qubits. From a cybersecurity perspective, the magic of qubits is that if a hacker tries to observe them in transit, their fragile quantum states shatter. This means it is impossible for hackers to tamper with network data without leaving a trace. Now, many companies are taking advantage of this feature to create networks that transmit highly sensitive data. In theory, these networks are secure.[10]

Microwave storage and light learning microwave conversion

The nitrogen-vacancy center in diamond has attracted a lot of research in the past decade due to its excellent performance in optical nanophotonic devices. In a recent experiment, electromagnetically induced transparency was implemented on a multi-pass diamond chip to achieve full photoelectric magnetic field sensing. Despite these closely related experiments, optical storage has yet to be implemented in practice. The existing nitrogen-vacancy center (negative charge and neutral nitrogen-vacancy center) energy level structure makes the optical storage of the diamond nitrogen-vacancy center possible.

The coupling between the nitrogen-vacancy spin ensemble and superconducting qubits provides the possibility for microwave storage of superconducting qubits. Optical storage combines the coupling of electron spin state and superconducting quantum bits, which enables the nitrogen-vacancy center in diamond to play a role in the hybrid quantum system of the mutual conversion of coherent light and microwave.[11]

Orbital angular momentum is stored in alkali vapor

Large resonant light depth is the premise of constructing efficient quantum-optical memory. Alkali metal vapor isotopes of a large number of near-infrared wavelength optical depth, because they are relatively narrow spectrum line and the number of high density in the warm temperature of 50-100 ∘ C. Alkali vapors have been used in some of the most important memory developments, from early research to the latest results we are discussing, due to their high optical depth, long coherent time and easy near-infrared optical transition.

Because of its high information transmission ability, people are more and more interested in its application in the field of quantum information. Structured light can carry orbital angular momentum, which must be stored in the memory to faithfully reproduce the stored structural photons. An atomic vapor quantum memory is ideal for storing such beams because the orbital angular momentum of photons can be mapped to the phase and amplitude of the distributed integration excitation. Diffusion is a major limitation of this technique because the motion of hot atoms destroys the spatial coherence of the storage excitation. Early successes included storing weakly coherent pulses of spatial structure in a warm, ultracold atomic whole. In one experiment, the same group of scientists in a caesium magneto-optical trap was able to store and retrieve vector beams at the single-photon level.[12] The memory preserves the rotation invariance of the vector beam, making it possible to use it in conjunction with qubits encoded for maladjusted immune quantum communication.

The first storage structure, a real single photon, was achieved with electromagnetically induced transparency in rubidium magneto-optical trap. The predicted single photon generated by spontaneous four-wave mixing in one magneto-optical trap is prepared by an orbital angular momentum unit using spiral phase plates, stored in the second magneto-optical trap and recovered. The dual-orbit setup also proves coherence in multimode memory, where a preannounced single photon stores the orbital angular momentum superposition state for 100 nanoseconds.[11]

Optical Quantum

GEM

GEM (Gradient Echo Memory) is a protocol for storing optical information and it can be applied to both atomic gas and solid-state memories. The idea was first demonstrated by researchers at ANU. The experiment in a three-level system based on hot atomic vapor resulted in demonstration of coherent storage with efficiency up to 87%.[13]

Electromagnetically induced transparency

Electromagnetically induced transparency (EIT) was first introduced by Harris and his colleagues at Stanford University in 1990.[14] The work showed that when a laser beam causes a quantum interference between the excitation paths, the optical response of the atomic medium is modified to eliminate absorption and refraction at the resonant frequencies of atomic transitions. Slow light, optical storage, and quantum memories can be achieved based on EIT. In contrast to other approaches, EIT has a long storage time and is a relatively easy and inexpensive solution to implement. For example, electromagnetically induced transparency does not require the very high power control beams usually needed for Raman quantum memories, nor does it require the use of liquid helium temperatures. In addition, photon echo can read EIT while the spin coherence survives due to the time delay of readout pulse caused by a spin recovery in non-uniformly broadened media. Although there are some limitations on operating wavelength, bandwidth, and mode capacity, techniques have been developed to make EIT-based quantum memories a valuable tool in the development of quantum telecommunication systems.[11] In 2018, a highly efficient EIT-based optical memory in cold atom demonstrated a 92% storage-and-retrieval efficiency in the classical regime with coherent beams [15] and a 70% storage-and-retrieval efficiency was demonstrated for polarization qubits encoded in weak coherent states, beating any classical benchmark.[16] Following these demonstrations, single-photon polarization qubits were then stored via EIT in a 85Rb cold atomic ensemble and retrieved with an 85% efficiency [17] and entanglement between two cesium-based quantum memories was also achieved with an overall transfer efficiency close to 90%.[18]

Crystals doped with rare earth

The mutual transformation of quantum information between light and matter is the focus of quantum informatics. The interaction between a single photon and a cooled crystal doped with rare earth ions is investigated. Crystals doped with rare earth have broad application prospects in the field of quantum storage because they provide a unique application system.[19] Li Chengfeng from the quantum information laboratory of the Chinese Academy of Sciences developed a solid-state quantum memory and demonstrated the photon computing function using time and frequency. Based on this research, a large-scale quantum network based on quantum repeater can be constructed by utilizing the storage and coherence of quantum states in the material system. Researchers have shown for the first time in rare-earth ion-doped crystals. By combining the three-dimensional space with two-dimensional time and two-dimensional spectrum, a kind of memory that is different from the general one is created. It has the multimode capacity and can also be used as a high fidelity quantum converter. Experimental results show that in all these operations, the fidelity of the three-dimensional quantum state carried by the photon can be maintained at around 89%.[20]

Raman scattering in solids

Diamond has very high Raman gain in optical phonon mode of 40 THz and has a wide transient window in a visible and near-infrared band, which makes it suitable for being an optical memory with a very wide band. After the Raman storage interaction, the optical phonon decays into a pair of photons through the channel, and the decay lifetime is 3.5 ps, which makes the diamond memory unsuitable for communication protocol.

Nevertheless, diamond memory has allowed some revealing studies of the interactions between light and matter at the quantum level: optical phonons in a diamond can be used to demonstrate emission quantum memory, macroscopic entanglement, pre-predicted single-photon storage, and single-photon frequency manipulation.[11]

Future development

For quantum memory, quantum communication and cryptography are the future research directions. However, there are many challenges to building a global quantum network. One of the most important challenges is to create memories that can store the quantum information carried by light. Researchers at the University of Geneva in Switzerland working with France's CNRS have discovered a new material in which an element called ytterbium can store and protect quantum information, even at high frequencies. This makes ytterbium an ideal candidate for future quantum networks. Because signals cannot be replicated, scientists are now studying how quantum memories can be made to travel farther and farther by capturing photons to synchronize them. In order to do this, it becomes important to find the right materials for making quantum memories. Ytterbium is a good insulator and works at high frequencies so that photons can be stored and quickly restored.

See also

References

  1. ^ Lvovsky AI, Sanders BC, Tittel W (December 2009). "Optical quantum memory". Nature Photonics. 3 (12): 706–714. Bibcode:2009NaPho...3..706L. doi:10.1038/nphoton.2009.231. ISSN 1749-4893. S2CID 4661175.
  2. ^ Le Gouët JL, Moiseev S (2012). "Quantum Memory". Journal of Physics B: Atomic, Molecular and Optical Physics. 45 (12): 120201. doi:10.1088/0953-4075/45/12/120201.
  3. ^ Ohlsson N, Kröll S, Moiseev SA (2003). "Delayed single-photon self-interference — A double slit experiment in the time domain". In Bigelow NP, Eberly JH, Stroud CR, Walmsley IA (eds.). Coherence and Quantum Optics VIII. Springer US. pp. 383–384. doi:10.1007/978-1-4419-8907-9_80. ISBN 9781441989079.
  4. ^ Hosseini M, Sparkes B, Hétet G, et al. (2009). "Coherent optical pulse sequencer for quantum applications". Nature. 461 (7261): 241–245. Bibcode:2009Natur.461..241H. doi:10.1038/nature08325. PMID 19741705. S2CID 1077208.
  5. ^ Freer S, Simmons S, Laucht A, Muhonen JT, Dehollain JP, Kalra R, et al. (2016). "A single-atom quantum memory in silicon". Quantum Science and Technology. 2: 015009. arXiv:1608.07109. doi:10.1088/2058-9565/aa63a4. S2CID 118590076.
  6. ^ "Shengwang Du Group | Atom and Quantum Optics Lab". Retrieved 2019-05-12.
  7. ^ "RC02_William Mong Institute of Nano Science and Technology | Institutes and Centers | Research Institutes and Centers | Research | HKUST Department of Physics". physics.ust.hk. Retrieved 2019-05-12.
  8. ^ "Quantum memories [GAP-Optique]". www.unige.ch. Retrieved 2019-05-12.
  9. ^ Tittel W, Afzelius M, Chaneliere T, Cone RL, Kröll S, Moiseev SA, Sellars M (2010). "Photon-echo quantum memory in solid state systems". Laser & Photonics Reviews. 4 (2): 244–267. Bibcode:2010LPRv....4..244T. doi:10.1002/lpor.200810056. ISSN 1863-8899. S2CID 120294578.
  10. ^ "Quantum Communication | PicoQuant". www.picoquant.com. Retrieved 2019-05-12.
  11. ^ a b c d Heshami K, England DG, Humphreys PC, Bustard PJ, Acosta VM, Nunn J, Sussman BJ (November 2016). "Quantum memories: emerging applications and recent advances". Journal of Modern Optics. 63 (20): 2005–2028. doi:10.1080/09500340.2016.1148212. PMC 5020357. PMID 27695198.
  12. ^ Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J (March 2014). "A quantum memory for orbital angular momentum photonic qubits". Nature Photonics. 8 (3): 234–238. arXiv:1308.0238. Bibcode:2014NaPho...8..234N. doi:10.1038/nphoton.2013.355. S2CID 118585951.
  13. ^ Hosseini M, Sparkes B, Campbell G, et al. (2011). "High efficiency coherent optical memory with warm rubidium vapour". Nat Commun. 2: 174. arXiv:1009.0567. Bibcode:2011NatCo...2..174H. doi:10.1038/ncomms1175. PMC 3105315. PMID 21285952. S2CID 6545778.
  14. ^ Harris SE, Field JE, Imamoglu A (March 1990). "Nonlinear optical processes using electromagnetically induced transparency". Physical Review Letters. 64 (10). American Physical Society (APS): 1107–1110. Bibcode:1990PhRvL..64.1107H. doi:10.1103/physrevlett.64.1107. PMID 10041301.
  15. ^ Hsiao YF, Tsai PJ, Chen HS, Lin SX, Hung CC, Lee CH, et al. (May 2018). "Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency". Physical Review Letters. 120 (18): 183602. arXiv:1605.08519. Bibcode:2018PhRvL.120r3602H. doi:10.1103/PhysRevLett.120.183602. PMID 29775362. S2CID 21741318.
  16. ^ Vernaz-Gris P, Huang K, Cao M, Sheremet AS, Laurat J (January 2018). "Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble". Nature Communications. 9 (1): 363. arXiv:1707.09372. Bibcode:2018NatCo...9..363V. doi:10.1038/s41467-017-02775-8. PMC 5785556. PMID 29371593.
  17. ^ Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu SL (March 2019). "Efficient quantum memory for single-photon polarization qubits". Nature Photonics. 13 (5): 346–351. arXiv:2004.03123. Bibcode:2019NaPho..13..346W. doi:10.1038/s41566-019-0368-8. S2CID 126945158.
  18. ^ Cao M, Hoffet F, Qiu S, Sheremet AS, Laurat J (2020-10-20). "Efficient reversible entanglement transfer between light and quantum memories". Optica. 7 (10): 1440–1444. arXiv:2007.00022. Bibcode:2020Optic...7.1440C. doi:10.1364/OPTICA.400695.
  19. ^ "Solid State Quantum Memories | QPSA @ ICFO". qpsa.icfo.es. Retrieved 2019-05-12.
  20. ^ Simon C, Afzelius M, Appel J, de la Giroday AB, Dewhurst SJ, Gisin N, Hu CY, Jelezko F, Kröll S (2010-05-01). "Quantum memories". The European Physical Journal D. 58 (1): 1–22. arXiv:1003.1107. doi:10.1140/epjd/e2010-00103-y. ISSN 1434-6079. S2CID 11793247.

Read other articles:

حدائق سطح في مركز روكفلر في منهاتن حديقة السطح هي حديقة على سطح مبنى.[1][2][3] وإلى جانب الاستفادة منها للزينة فيمكن أن توفر مزروعات السطوح الغذاء وتعلب دوراً التحكم في درجة الحرارة، و في الدورة الهيدرولوجية، وتوفر موائل للحياة البرية، وفرص للترفيه. مراجع ^ معلوما...

Untuk kegunaan lain, lihat Sol. Di Mars, selang waktu antara titik 1 dan titik 2 adalah hari sideris. Sementara itu, selang waktu antara titik 1 dan titik 3 merupakan satu hari Matahari di Mars atau disebut sol. Sol (berasal dari bahasa Latin yang berarti Matahari) adalah satu hari Matahari di Mars. Satu sol merupakan selang waktu bagi Matahari untuk kembali ke meridian yang sama apabila diamati dari permukaan Mars. Satuan ini merupakan satu dari beberapa satuan yang digunakan untuk menghitun...

Chester William Nimitz Chester William Nimitz (24 Februari 1885 - 20 Februari 1966) adalah komandan armada pasifik Amerika Serikat selama Perang Dunia II.[1] Ia juga salah satu administrator utama dan pembuat strategi di angkatan laut.[1] Ia memerintahkan semua pasukan darat dan laut di wilayah Pasifik Tengah.[1] Lulusan (1905) dari Akademi Naval ini juga bertugas pada Perang Dunia I sebagai kepala staf komandan angkatan laut Amerika Serikat di Atlantik.[1][...

Untuk tempat lain yang bernama sama, lihat Purworejo (disambiguasi). PurworejoKecamatanAsrama tentara Purworejo pada masa Hindia Belanda (sekitar 1870)Negara IndonesiaProvinsiJawa TengahKabupatenPurworejoPemerintahan • CamatSudaryono, S.SosLuas • Total52,73 km2 (20,36 sq mi)Populasi • Total98.620 (tahun 2.011)[1] jiwa • Kepadatan1.870/km2 (4,800/sq mi)Kode Kemendagri33.06.06 Situs webhttp://kec-purworejo.purworej...

Cet article est une ébauche concernant une localité de la province de Namur. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Pour les articles homonymes, voir Dion. Dion Vue générale du village. Administration Pays Belgique Région  Région wallonne Communauté  Communauté française Province Province de Namur Arrondissement Dinant Commune Beauraing Code postal 5570 Zone téléphonique 082 Démogra...

Dieser Artikel behandelt die Fachsprache. Zur Programmiersprache zur Ansteuerung von Druckern siehe Drucker (Gerät)#Druckersprachen. Druckersprache ist die Bezeichnung für eine Fachsprache, die in der polygraphischen Industrie, insbesondere in der Drucktechnik, entstanden ist. Der Begriff Drucker ist aus dem „druckenden“ Handwerk entstanden. Erst mit der Herausbildung der Massenproduktion fand eine Differenzierung der Berufsgruppen statt. Die Bezeichnung Setzersprache wird gelegentlich ...

For the ship, see SS Robert Coryndon. SirRobert Thorne CoryndonKCMGRobert Coryndon, Nairobi, 1923, with Palmer Kerrison (left) and E.A.T. Dutton (right)Governor of KenyaIn office1922 – 10 February 1925Preceded bySir Edward NortheySucceeded bySir Edward GriggGovernor of UgandaIn office1918–1922Preceded bySir Frederick JacksonSucceeded bySir Geoffrey ArcherResident Commissioner in BasutolandIn office1916–1917Preceded bySir Herbert SloleySucceeded bySir Edward GarrawayResident Com...

此條目部分链接不符合格式手冊規範。跨語言链接及章節標題等處的链接可能需要清理。 (2015年12月11日)請協助改善此條目。參見WP:LINKSTYLE、WP:MOSIW以了解細節。突出显示跨语言链接可以便于检查。   关于莊漢生,请见「鮑里斯·約翰遜」。 艾倫·強生Rt. Hon. Alan Johnson閣下內政大臣任期2009年6月5日—2010年5月11日君主伊利沙伯二世首相白高敦前任施卓琪继任文翠珊衞生大...

Prussian physicist and meteorologist This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Heinrich Wilhelm Dove – news · newspapers · books · scholar · JSTOR (January 2017) (Learn how and when to remove this template message) Heinrich Wilhelm DoveBorn(1803-10-06)October 6, 1803Liegnitz, Kingdom of PrussiaDiedApri...

Ádám Bogdán Bogdán bermain untuk Bolton Wanderers pada 2013Informasi pribadiNama lengkap Ádám Bogdán[1]Tanggal lahir 27 September 1987 (umur 36)Tempat lahir Budapest, HungariaTinggi 1,94 m (6 ft 4+1⁄2 in)[2]Posisi bermain Penjaga GawangKarier junior0000–2001 II. Kerület UFC2001–2005 VasasKarier senior*Tahun Tim Tampil (Gol)2005–2007 Vasas 0 (0)2006 → Vecsés (pinjaman) 9 (0)2007–2015 Bolton Wanderers 104 (0)2009 → Crewe Alexandra (...

New Zealand politician For the Australian documentary filmmaker, see Dennis O'Rourke. Denis O'RourkeDenis O'Rourke in April 2012Member of the New Zealand Parliamentfor New Zealand First party listIn office30 November 2011 (2011-11-30) – 23 September 2017 Personal detailsBorn (1946-07-26) 26 July 1946 (age 77)Christchurch, New ZealandPolitical partyNew Zealand FirstOther politicalaffiliationsLabour (1984–2003)Alma materUniversity of CanterburyProfessionLawyer D...

Archaeological site in Illinois, United States Gentleman Farm siteLocation in IllinoisShow map of IllinoisLocation in United StatesShow map of the United StatesLocationin LaSalle County, Illinois, on the Illinois RiverCoordinates41°19′17″N 88°40′25″W / 41.32139°N 88.67361°W / 41.32139; -88.67361Area1 acre The Gentleman Farm site is located in LaSalle County, Illinois, on the Illinois River. It is a multi-component site with the main occupation being a Langf...

Skyscraper in Pittsburgh, Pennsylvania Federated TowerFederated Tower, rising above the David L. Lawrence Convention CenterGeneral informationTypeOfficeLocation1001 Liberty AvenueCoordinates40°26′40″N 79°59′39″W / 40.44444°N 79.99417°W / 40.44444; -79.99417Construction started1985Completed1986OwnerCBRE Global InvestorsManagementCBRE GroupHeightRoof358 ft (109 m)Technical detailsFloor count27Floor area530,000Design and constructionDeveloperLiberty ...

River in Serbia, North MacedoniaPčinjaLocationCountrySerbia, North MacedoniaPhysical characteristicsMouth  • locationVardar • coordinates41°49′08″N 21°40′20″E / 41.819°N 21.6722°E / 41.819; 21.6722Length135 km (84 mi)[1]Basin featuresProgressionVardar→ Aegean Sea The Pčinja (Serbian and Macedonian Пчиња [pt͡ʃîɲa] ⓘ) is a 135 km long river[1] in Serbia and No...

Renang pada Olimpiade Musim Panas 1996LokasiPusat Akuatik Georgia TechAtlanta, GeorgiaTanggal20–26 Juli 1996Jumlah disiplin32Peserta762 dari 117 negara← 19922000 → Renang pada Olimpiade Musim Panas 1996 adalah pelaksanaan cabang olahraga renang pada penyelenggaraan Olimpiade Musim Panas 1996. Kompetisi pada cabang olahraga ini berlangsung di Pusat Akuatik Georgia Tech, Atlanta, Georgia. Edisi ini menandingkan 32 nomor. 762 atlet dari 117 negara bertandin...

岡本 松太郎(おかもと まつたろう、1860年4月9日(万延元年3月19日[1])- 1942年(昭和17年)11月23日[2][3])は、明治から昭和前期の農業経営者、政治家。衆議院議員、兵庫県会議長。 経歴 播磨国飾東郡八重畑村[4](兵庫県[3]飾東郡谷内村、飾磨郡谷内村[1][2][5]、飾東村を経て現姫路市[2]飾東町)で、代々農業を営む家...

  لمعانٍ أخرى، طالع المصاقيل (توضيح). المصاقيل النوع رسوم متحركة ، كوميديا تأليف فكرة مؤيد زيدان إخراج مؤيد زيدان بطولة ماجد مطرب فواز ريماس منصور أغادير السعيد محمد القس طارق الحربي ريم سعادة دريعان الدريعان مشعل المطيري شافي الحارثي شعيفان محمد العتيبي البلد  الس...

Functional constituency of Hong Kong District Council (Second)區議會(第二)Former Functional constituencyfor the Legislative Council of Hong KongCountry Hong KongElectorate4,196,680 (2020)[1]Former constituencyCreated2012Abolished2021Number of membersFiveMember(s)Last:  Starry Lee (DAB)  Holden Chow (DAB)Vacant (3) The District Council (Second) functional constituency (Chinese: 區議會(第二)功能界別) was a functional constituency in the elections...

MacDonald PassMacDonald pass east side, looking into Lewis and Clark CountyElevation6,312 ft (1,924 m)Traversed by US 12LocationLewis and Clark / Powell counties, Montana, USRangeRocky MountainsCoordinates46°33′41″N 112°18′31″W / 46.56139°N 112.30861°W / 46.56139; -112.30861 (MacDonald Pass)[1] MacDonald Pass, el.6,312 feet (1,924 m), (also known as McDonald Pass)[2] is a mountain pass on the continental divide west of Hele...

Historic house in Iowa, United States United States historic placeJack Lamberson HouseU.S. National Register of Historic Places Location511 N. Park Ave.Oskaloosa, IowaCoordinates41°18′1″N 92°37′40″W / 41.30028°N 92.62778°W / 41.30028; -92.62778Area2 acres (0.81 ha)Built1951ArchitectFrank Lloyd WrightArchitectural styleUsonianNRHP reference No.88002146[1]Added to NRHP11/09/1988 The Alice and Jack Lamberson House, also known as the...