Racetrack memory

Racetrack memory or domain-wall memory (DWM) is an experimental non-volatile memory device under development at IBM's Almaden Research Center by a team led by physicist Stuart Parkin.[1] It is a current topic of active research at the Max Planck Institute of Microstructure Physics in Dr. Parkin's group. In early 2008, a 3-bit version was successfully demonstrated.[2] If it were to be developed successfully, racetrack memory would offer storage density higher than comparable solid-state memory devices like flash memory.[citation needed]

Description

Racetrack memory uses a spin-coherent electric current to move magnetic domains along a nanoscopic permalloy wire about 200 nm across and 100 nm thick. As current is passed through the wire, the domains pass by magnetic read/write heads positioned near the wire, which alter the domains to record patterns of bits. A racetrack memory device is made up of many such wires and read/write elements. In general operational concept, racetrack memory is similar to the earlier bubble memory of the 1960s and 1970s. Delay-line memory, such as mercury delay lines of the 1940s and 1950s, are a still-earlier form of similar technology, as used in the UNIVAC and EDSAC computers. Like bubble memory, racetrack memory uses electrical currents to "push" a sequence of magnetic domains through a substrate and past read/write elements. Improvements in magnetic detection capabilities, based on the development of spintronic magnetoresistive sensors, allow the use of much smaller magnetic domains to provide far higher bit densities.

In production, it was expected[citation needed] that the wires could be scaled down to around 50 nm. There were two arrangements considered for racetrack memory. The simplest was a series of flat wires arranged in a grid with read and write heads arranged nearby. A more widely studied arrangement used U-shaped wires arranged vertically over a grid of read/write heads on an underlying substrate. This would allow the wires to be much longer without increasing its 2D area, although the need to move individual domains further along the wires before they reach the read/write heads results in slower random access times. Both arrangements offered about the same throughput performance. The primary concern in terms of construction was practical; whether or not the three dimensional vertical arrangement would be feasible to mass-produce.

Comparison to other memory devices

Projections in 2008 suggested that racetrack memory would offer performance on the order of 20-32 ns to read or write a random bit. This compared to about 10,000,000 ns for a hard drive, or 20-30 ns for conventional DRAM. The primary authors discussed ways to improve the access times with the use of a "reservoir" to about 9.5 ns. Aggregate throughput, with or without the reservoir, would be on the order of 250-670 Mbit/s for racetrack memory, compared to 12800 Mbit/s for a single DDR3 DRAM, 1000 Mbit/s for high-performance hard drives, and 1000 to 4000 Mbit/s for flash memory devices. The only current technology that offered a clear latency benefit over racetrack memory was SRAM, on the order of 0.2 ns, but at a higher cost. Larger feature size "F" of about 45 nm (as of 2011) with a cell area of about 140 F2.[3][4]

Racetrack memory is one among several emerging technologies that aim to replace conventional memories such as DRAM and Flash, and potentially offer a universal memory device applicable to a wide variety of roles. Other contenders included magnetoresistive random-access memory (MRAM), phase-change memory (PCRAM) and ferroelectric RAM (FeRAM). Most of these technologies offer densities similar to flash memory, in most cases worse, and their primary advantage is the lack of write-endurance limits like those in flash memory. Field-MRAM offers excellent performance as high as 3 ns access time, but requires a large 25-40 F² cell size. It might see use as an SRAM replacement, but not as a mass storage device. The highest densities from any of these devices is offered by PCRAM, with a cell size of about 5.8 F², similar to flash memory, as well as fairly good performance around 50 ns. Nevertheless, none of these can come close to competing with racetrack memory in overall terms, especially density. For example, 50 ns allows about five bits to be operated in a racetrack memory device, resulting in an effective cell size of 20/5=4 F², easily exceeding the performance-density product of PCM. On the other hand, without sacrificing bit density, the same 20 F² area could fit 2.5 2-bit 8 F² alternative memory cells (such as resistive RAM (RRAM) or spin-torque transfer MRAM), each of which individually operating much faster (~10 ns).

In most cases, memory devices store one bit in any given location, so they are typically compared in terms of "cell size", a cell storing one bit. Cell size itself is given in units of F², where "F" is the feature size design rule, representing usually the metal line width. Flash and racetrack both store multiple bits per cell, but the comparison can still be made. For instance, hard drives appeared to be reaching theoretical limits around 650 nm²/bit,[5] defined primarily by the capability to read and write to specific areas of the magnetic surface. DRAM has a cell size of about 6 F², SRAM is much less dense at 120 F². NAND flash memory is currently the densest form of non-volatile memory in widespread use, with a cell size of about 4.5 F², but storing three bits per cell for an effective size of 1.5 F². NOR flash memory is slightly less dense, at an effective 4.75 F², accounting for 2-bit operation on a 9.5 F² cell size.[4] In the vertical orientation (U-shaped) racetrack, nearly 10-20 bits are stored per cell, which itself would have a physical size of at least about 20 F². In addition, bits at different positions on the "track" would take different times (from ~10 to ~1000 ns, or 10 ns/bit) to be accessed by the read/write sensor, because the "track" would move the domains at a fixed rate of ~100 m/s past the read/write sensor.

Development challenges

One limitation of the early experimental devices was that the magnetic domains could be pushed only slowly through the wires, requiring current pulses on the orders of microseconds to move them successfully. This was unexpected, and led to performance equal roughly to that of hard drives, as much as 1000 times slower than predicted. Recent research has traced this problem to microscopic imperfections in the crystal structure of the wires which led to the domains becoming "stuck" at these imperfections. Using an X-ray microscope to directly image the boundaries between the domains, their research found that domain walls would be moved by pulses as short as a few nanoseconds when these imperfections were absent. This corresponds to a macroscopic performance of about 110 m/s.[6]

The voltage required to drive the domains along the racetrack would be proportional to the length of the wire. The current density must be sufficiently high to push the domain walls (as in electromigration). A difficulty for racetrack technology arises from the need for high current density (>108 A/cm2); a 30 nm x 100 nm cross-section would require >3 mA. The resulting power draw becomes higher than that required for other memories, e.g., spin-transfer torque memory (STT-RAM) or flash memory.

Another challenge associated with racetrack memory is the stochastic nature in which the domain walls move, i.e., they move and stop at random positions.[7] There have been attempts to overcome this challenge by producing notches at the edges of the nanowire.[8] Researchers have also proposed staggered nanowires to pin the domain walls precisely.[9] Experimental investigations have shown[10] the effectiveness of staggered domain wall memory.[11] Recently researchers have proposed non-geometrical approaches such as local modulation of magnetic properties through composition modification. Techniques such as annealing induced diffusion[12] and ion-implantation[13] are used.

See also

References

  1. ^ "Spintronics Devices Research, Magnetic Racetrack Memory Project". Archived from the original on 12 October 2007. Retrieved 15 September 2007.
  2. ^ Masamitsu Hayashi; et al. (April 2008). "Current-Controlled Magnetic Domain-Wall Nanowire Shift Register". Science. 320 (5873): 209–211. Bibcode:2008Sci...320..209H. doi:10.1126/science.1154587. PMID 18403706. S2CID 7872869.
  3. ^ "ITRS 2011". Archived from the original on 31 January 2013. Retrieved 8 November 2012.
  4. ^ a b Parkin; et al. (11 April 2008). "Magnetic Domain-Wall Racetrack Memory". Science. 320 (5873): 190–4. Bibcode:2008Sci...320..190P. doi:10.1126/science.1145799. PMID 18403702. S2CID 19285283.
  5. ^ 1 Tbit/in2 is approx. 650nm²/bit.
  6. ^ Swarup, Amarendra (11 May 2007). "'Racetrack' memory could gallop past the hard disk". New Scientist.
  7. ^ Kumar, D.; Jin, T.; Risi, S. Al; Sbiaa, R.; Lew, W. S.; Piramanayagam, S. N. (March 2019). "Domain Wall Motion Control for Racetrack Memory Applications". IEEE Transactions on Magnetics. 55 (3): 2876622. Bibcode:2019ITM....5576622K. doi:10.1109/TMAG.2018.2876622. hdl:10356/139037. ISSN 0018-9464. S2CID 67872687.
  8. ^ Hayashi, M.; Thomas, L.; Moriya, R.; Rettner, C.; Parkin, S. S. P. (2008). "Current-Controlled Magnetic Domain-Wall Nanowire Shift Register". Science. 320 (5873): 209–211. Bibcode:2008Sci...320..209H. doi:10.1126/science.1154587. ISSN 0036-8075. PMID 18403706. S2CID 7872869.
  9. ^ Mohammed, H. (2020). "Controlled spin-torque driven domain wall motion using staggered magnetic wires". Applied Physics Letters. 116 (3): 032402. arXiv:1908.09304. Bibcode:2020ApPhL.116c2402M. doi:10.1063/1.5135613. S2CID 201695574.
  10. ^ Prem Piramanayagam (24 February 2019), Staggered Domain Wall Memory, archived from the original on 21 December 2021, retrieved 13 March 2019
  11. ^ Al Bahri, M.; Borie, B.; Jin, T.L.; Sbiaa, R.; Kläui, M.; Piramanayagam, S.N. (8 February 2019). "Staggered Magnetic Nanowire Devices for Effective Domain-Wall Pinning in Racetrack Memory". Physical Review Applied. 11 (2): 024023. Bibcode:2019PhRvP..11b4023A. doi:10.1103/PhysRevApplied.11.024023. hdl:10220/48230. S2CID 139224277.
  12. ^ Jin, T. L.; Ranjbar, M.; He, S. K.; Law, W. C.; Zhou, T. J.; Lew, W. S.; Liu, X. X.; Piramanayagam, S. N. (2017). "Tuning magnetic properties for domain wall pinning via localized metal diffusion". Scientific Reports. 7 (1): 16208. Bibcode:2017NatSR...716208J. doi:10.1038/s41598-017-16335-z. PMC 5701220. PMID 29176632.
  13. ^ Jin, Tianli; Kumar, Durgesh; Gan, Weiliang; Ranjbar, Mojtaba; Luo, Feilong; Sbiaa, Rachid; Liu, Xiaoxi; Lew, Wen Siang; Piramanayagam, S. N. (2018). "Nanoscale Compositional Modification in Co/Pd Multilayers for Controllable Domain Wall Pinning in Racetrack Memory". Physica Status Solidi RRL. 12 (10): 1800197. Bibcode:2018PSSRR..1200197J. doi:10.1002/pssr.201800197. hdl:10356/137507. S2CID 52557582.


Read other articles:

Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation US Army bombers flying over near-periodic swell in shallow water, close to the Panama coast (1933). The sharp crests and very flat troughs are characteristic for cnoidal waves. In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used...

Fictional character from the Australian soap opera Neighbours Soap opera character Leo TanakaNeighbours characterPortrayed byTim KanoDuration2016–presentFirst appearance22 September 2016 (2016-09-22)ClassificationPresent; regularIntroduced byJason HerbisonSpin-offappearances Road Trip (2016) Summer Stories (2016) Neighbours vs Time Travel (2017) In-universe informationOccupation Business consultant Owner of Erinsborough Backpackers Co-owner of Back Lane Bar Vin...

Pour les articles homonymes, voir Colby (homonymie) et Caillat. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (juin 2010). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ...

Servicio Nacionalde Sangre Administración de los Servicios de Salud del Estado LocalizaciónPaís  UruguayLocalidad Avenida 8 de Octubre 2720,Montevideo, Uruguay34°53′20.6″S 56°9′35.0″O / -34.889056, -56.159722Datos generalesFundación 1953Sistema asistencia PúblicoEspecialidad HemoterapiaSitio web oficial[editar datos en Wikidata] El Servicio Nacional de Sangre «Dr. Julio C. Estol» (por sus siglas: SNS) es la dependencia de la Administración...

Майкл Макговерн Особисті дані Народження 12 липня 1984(1984-07-12) (39 років)   Енніскіллен, Північна Ірландія Зріст 190 см Вага 89 кг Громадянство Північна Ірландія Позиція воротар Інформація про клуб Поточний клуб «Норвіч Сіті» Номер 33 Юнацькі клуби «Селтік» Професіональні кл

Music from the video game Deltarune The music of Deltarune comprises multiple soundtrack albums created and scored by Toby Fox. The first soundtrack album was released on Bandcamp on November 1, 2018, a day after the game was launched.[1] In collaboration with Fangamer, Fox released the first chapter's soundtrack on vinyl in 2019.[2] Releases Deltarune Chapter 1 OST Deltarune, Chapter 1 redirects here. For the chapter of the game, see Deltarune § Chapter 1 – The Beginn...

South Korean TV series or program King of AmbitionPromotional posterAlso known asYawang King of the Beast Queen of the NightGenreMelodrama Romance ActionBased onDaemul - Tale of Yawangby Park In-kwonWritten byLee Hee-myung[1]Directed byJo Young-kwang Park Shin-wooStarringKwon Sang-woo Soo Ae Jung Yun-ho Kim Sung-ryung Go Joon-heeMusic byLee Jae Gyu Park Seung-jinCountry of originSouth KoreaOriginal languageKoreanNo. of episodes24ProductionExecutive producerLee Hyun-jikProducersPa...

Character from The Legend of Korra Fictional character MakoThe Legend of Korra characterMako in The Legend of Korra.First appearanceA Leaf in the Wind (2012)Created byMichael Dante DiMartinoBryan KonietzkoVoiced byDavid FaustinoIn-universe informationFull nameMakoSpeciesHumanGenderMaleOccupationPro-bender (season 1)Police officer (seasons 2-3, Turf Wars)Bodyguard (season 4)FamilySan (father; deceased)Naoki (mother; deceased)Bolin (brother)Significant otherKorra (ex-girlfriend, seasons 1-2)Asa...

2023 Indian comedy film Deiva MachanTheatrical release posterDirected byMartyn Nirmal KumarWritten byMartyn Nirmal KumarProduced byUdaya KumarGeeta UdayakumarM. P. VeeramaniStarring Vimal Pandiarajan Anitha Sampath CinematographyCamil J. AlexEdited byS ElayarajaMusic byScore:AjeshSongs:Godwin J. KodanProductioncompaniesUday ProductionsMagic Touch PicturesRelease date 21 April 2023 (2023-04-21) CountryIndiaLanguageTamil Deiva Machan is a 2023 Indian Tamil-language fantasy comedy...

Isotop utama magnesium Iso­top Peluruhan kelim­pahan waktu paruh (t1/2) mode pro­duk 24Mg 79,0% stabil 25Mg 10,0% stabil 26Mg 11,0% stabil Berat atom standar Ar°(Mg)[24,304, 24,307]24,305±0,002 (diringkas)[1]lihatbicarasunting Magnesium (12Mg) secara alami terdapat dalam tiga isotop stabil, 24Mg, 25Mg, dan 26Mg. Ada 19 radioisotop yang telah ditemukan, mulai dari 18Mg hingga 40Mg. Radioisotop yang berumur paling panjang adalah 28Mg dengan waktu paruh 20,...

Hrunamannahreppur HrunamannahreppurMunisipalitasNegara IslandiaRegionSuðurlandLuas • Total1.375,07 km2 (53,092 sq mi)Populasi (2017) • Total774 • Kepadatan0,0.056/km2 (0,015/sq mi)LAU8710Situs webhttp://www.hrunamannahreppur.is/ Hrunamannahreppur adalah salah satu munisipalitas di Islandia yang menjadi bagian region Suðurland. Kode LAU munisipalitas ini adalah 8710. Menurut sensus 2017, jumlah penduduk munisipalitas yang luas...

Iis Elianti (lahir 20 Juni 1968) adalah seorang politikus Indonesia kelahiran Karawang, Jawa Barat. Ia merupakan istri Bupati Buton Samsu Umar Abdul Samiun. Pada 2019, ia diangkat menjadi Wakil Bupati Buton mendampingi La Bakry selaku Bupati Buton.[1] Referensi ^ Iis Eliyanti, Wanita Pertama dalam Sejarah Kepemimpinan Kabupaten Buton. Satulis.  Artikel bertopik biografi Indonesia ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

1960 film by A. S. A. Sami Kaithi KannayiramPosterDirected byA. S. A. SamiBased onQaidi No. 911Produced byT. R. SundaramStarring R. S. Manohar Rajasulochana P. S. Veerappa Javar Seetharaman K. A. Thangavelu CinematographyC. A. S. ManiS. S. LalMusic byK. V. MahadevanProductioncompanyModern TheatresRelease date 1 December 1960 (1960-12-01) CountryIndiaLanguageTamil Kaithi Kannayiram (transl. Convict Kannayiram) is a 1960 Indian Tamil-language crime film, written and directe...

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 6 de diciembre de 2013. Para otros usos de este término, véase Kodori. Valle de Kodori Mapa de Abjasia mostrando la localización del valle de Kodori.UbicaciónDivisión  GeorgiaCoordenadas 43°05′00″N 41°45′00″E / 43.083333333333, 41.75CaracterísticasTipo Valle y DesfiladeroCursos de agua KodoriMapa de localización Valle de Kodori Ubicación (...

Village in North LebanonNiha نيحاVillageNihaLocation within LebanonCoordinates: 34°13′50″N 35°53′10″E / 34.2305652°N 35.8860564°E / 34.2305652; 35.8860564Country LebanonGovernorateNorth LebanonDistrictBatrounElevation1,350 m (4,430 ft)Time zoneUTC+2 (EET) • Summer (DST)UTC+3 (EEST)Dialing code+961 Niha (Arabic: نيحا), is a village in Batroun District, North Governorate, Lebanon.[1][2] References ^ Backgroun...

Large-scale conflict in South America (1864–1870) Paraguayan WarFrom top, left to right: the Battle of Riachuelo (1865), the Battle of Tuyutí (1866), the Battle of Curupayty (1866), the Battle of Avay (1868), the Battle of Lomas Valentinas (1868), the Battle of Acosta Ñu (1869), the Palacio de los López during the occupation of Asunción (1869), and Paraguayan war prisoners (c. 1870)Date13 November 1864[1] – 1 March 1870(5 years, 3 months, 2 weeks and 2 days...

Indian Media Company Purushottam PublishersIndustryPublishingAcademic publishingWritingFounded2007FounderSnehangshu Banerjee Biswa Priyo BandyopadhyayHeadquartersBaranagar, IndiaProductsAcademic & Research based Books, Guidebooks, AudioBooks and eBooksNumber of employees50ParentJIPL GroupWebsitepurushottam-publishers.in Purushottam Publishers is an independent publishing house and media company headquartered in Baranagar, West Bengal, India, publishing K-12 school textbooks, academic rese...

This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Eliana Cardoso – news · newspapers · books · scholar · JSTOR (June 2020) (Learn how and when to remove this template message) Eliana Anastasia Car...

volThe Windows XP vol commandDeveloper(s)DR, Microsoft, IBM, Toshiba, ReactOS ContributorsInitial releaseMarch 1983; 41 years ago (1983-03)Operating systemMS-DOS, PC DOS, MSX-DOS, FlexOS, SISNE plus, OS/2, eComStation, ArcaOS, DR DOS, ROM-DOS, 4690 OS, PTS-DOS, Windows, FreeDOS, ReactOSPlatformCross-platformTypeCommand In some operating systems, vol is a command within the command-line interpreters (shells) such as COMMAND.COM and cmd.exe. It is used to display the volu...

Blue Periodブルーピリオド(Burū Piriodo)GenreBildungsroman[1] MangaPengarangTsubasa YamaguchiPenerbitKodanshaPenerbit bahasa InggrisNA Kodansha USAMajalahMonthly AfternoonDemografiSeinenTerbit24 Juni 2017 – sekarangVolume15 Seri animeSutradaraKoji MasunariSkenarioReiko YoshidaStudioSeven ArcsSaluranasliJNN (MBS, TBS)Tayang 2 Oktober 2021 – 18 Desember 2021Episode12  Portal anime dan manga Blue Period (Jepang: ブルーピリオドcode: ja is deprecated , Hepburn: B...