В абстрактній алгебрі супердійсні числа — розширення класу дійсних чисел, запроваджене Г. Делзом та У. Вудіном як узагальнення гіпердійсних чисел, переважно для завдань нестандартного аналізу, теорії моделей, а також вивчення банахових алгебр. Множина супердійсних чисел є підмножиною множини сюрреальних чисел.
Супердійсні числа Г. Делза і У.Вудіна вирізняються від супердійсних чисел Д. Толла, які являють собою лексикографічним порядком фракцій формальних степеневих рядів над полем дійсних чисел.[1]
Формальне означення
Припустімо, що X є цілком регулярними простором, який також називається T3.5 простором, а С (Х)-алгебра неперервних дійсних функцій на X. Припустімо, що P є простим ідеалом в С (Х). Тоді фактор-кільце A = C (X) / P, є, за означенням, реальною алгеброю і може розглядатись як лінійно впорядкована множина. Локалізація кільця F від А є супердійсним полем, якщо F строго містить дійсні числа , та F не ізоморфне .
Якщо простий ідеал P є максимальним ідеалом, то F є полем гіпердійсних чисел.
Примітки
Література
- Dales, H. Garth; Woodin, W. Hugh (1996), Super-real fields, London Mathematical Society Monographs. New Series, 14, The Clarendon Press Oxford University Press, ISBN 978-0-19-853991-9, MR1420859, https://web.archive.org/web/20110604012258/http://www.oup.com/us/catalog/general/subject/Mathematics/PureMathematics/?view=usa&ci=9780198539919
- L. Gillman and M. Jerison: Rings of Continuous Functions, Van Nostrand, 1960.