В Евклідовій геометріїописаний чотирикутник[1]:cтор.54 — опуклийчотирикутник, усі сторони якого є дотичними до кола, розташованого всередині чотирикутника. Також має назву дотичний чотирикутник (англ.tangential quadrilateral).[2]:cтор.65
Саме коло називається вписаним колом чотирикутника, а його центр I — інцентром.
Опуклий чотирикутник можна описати тоді й лише тоді, коли чотири бісектриси його внутрішніх кутів є конкурентними, тобто, перетинаються в одній точці.[4]:cтор.62
Ця спільна точка є центром вписаного кола. Також в цій точці перетинаються бісектриси внутрішніх кутів, утворених при перетині прямих, що містять протилежні сторони чотирикутника.
Має місце і зворотня теорема, яка запропонована також Я.Штейнером[7]:cтор.64. теорема 10.4 :
Якщо суми протилежних сторін чотирикутника рівні, то цей чотирикутник є описаним навколо деякого кола.
Якщо протилежні сторони опуклого чотирикутника ABCD, який не є трапецією, перетинаються в точках E та F (прямі АВ і CD перетинаються в E, а прямі AD і BC перетинаються в F), то чотирикутник є описаним тоді і лише тоді, коли:[4]:cтор.64-65;
або
Ще одна необхідна і достатня умова полягає в тому, що опуклий чотирикутник ABCD є описаним тоді і тільки тоді, коли кола, вписані в два трикутники ABC і ADC (або ABD i BCD), дотичні одне до одного.[6]:cтор.66-67;
Діагоналі опуклого чотирикутника ABCD при перетині ділять його на чотири трикутники ∆ABD, ∆ABC , ∆BCD, ∆ACD. Кола, вписані в ці трикутники, дотикаються до сторін чотирикутника у восьми точках, по дві на кожну сторону. Чотирикутник є описаним чотирикутником тоді і тільки тоді, коли суми відстаней між точками дотику на протилежних сторонах чотирикутника рівні:[6]:cтор.68
У 1954 році Маріус Йосіфеску (Marius Iosifescu) довів, що опуклий чотирикутник має вписане коло тоді і тільки тоді, коли[8]
Крім того, опуклий чотирикутник з послідовними сторонами a, b, c, d є описаним тоді і тільки тоді, коли:
де Ra, Rb, Rc, Rd — радіуси вписаних ззовні кіл чотирикутника ABCD, які зовнішньо дотикаються до сторін a, b, c, d відповідно, і продовжень двох суміжних сторін для кожної сторони.[9]:стор.72
Формули для описаного чотирикутника
Площа
Нетригонометричні формули
Площу описаного чотирикутника ABCD зі сторонами a, b, c, d можна знайти за формулою:
Оскільки тоді і тільки тоді, коли описаний чотирикутник ABCD також є вписаним, тобто ABCD —біцентричний[10]:стор.104 ; , то з формули видно, що описаний чотирикутник має максимальну площу тоді і тільки тоді, коли він є біцентричним.
Тригонометричні формули
Формула площі описаного чотирикутника ABCD через його сторони a, b, c, d та два протилежних кута:[5]:стор.28 ;[11][12]:стор.24, теорема12 ;[13]:стор.156–157 ;
Для заданих довжин сторін площа є максимальною, коли чотирикутник також є вписаним і, отже, біцентричним чотирикутником. Для нього: , а отже,
Формула площі описаного чотирикутника ABCD через дві сусідні сторони та два протилежних кута:[5]: стор.30
Формула площі описаного чотирикутника ABCD через сторони a, b, c, d та кут між діагоналями:[5]: стор.29
Цю формулу не можна використовувати для дельтоїдів, оскільки в них діагоналі перпендикулярні: θ = 90°, і функція тангенса не визначена.
Формула площі описаного чотирикутника ABCD через відстані від його вершин до центра вписаного кола I та два протилежних кута:[12]:стор.19
Нерівності, пов'язані з площею
Як опосередковано зазначено вище, площа описаного чотирикутника зі сторонами a, b, c, d задовольняє нерівності:
Радіус вписаного кола описаного чотирикутника ABCD зі сторонами a, b, c, d та площею S, можна обчислити за формулою:[5]:стор.28
Описаний чотирикутник з даними сторонами має максимальний радіус вписаного кола, якщо чотирикутник є одночасно і вписаним (тобто біцентричним).
Радіус вписаного кола також можна виразити через відстані від центру кола I до вершин описаного чотирикутника ABCD. Якщо u = AI, v = BI, x = CI і t= DI, то[14]:
де .
Радіус вписаного кола описаного чотирикутника ABCD через довжини дотичних відрізківe, f, g, h:[10]:стор.104, Лемма2 ;[15]
Діагоналі описаного чотирикутника
Якщо e, f, g та h — довжини дотичних до вписаного кола з вершин описаного чотирикутника A, B, C та D відповідно, а p = AC та q = BD — його діагоналі, то:[10]:Лемма 3
Формули кутів
Якщо e, f, g та h— довжини дотичних до вписаного кола з вершин описаного чотирикутника A, B, C та D відповідно, то кути чотирикутника можна знайти за формулами:[3]: стор.126
Чотирикутник, утворений точками дотику вписаного кола до сторін описаного чотирикутника
Вписане в чотирикутник ABCD коло торкається до його сторін в чотирьох точках. Ці чотири точки формують новий чотирикутник усередині початкового, який є вписаним у вписане коло початкового чотирикутника.
Дві хорди («k» і «l» на малюнку) вписаного кола чотирикутника ABCD, що сполучають точки дотику вписаного кола на протилежних сторонах описаного чотирикутника, також є діагоналями контактного чотирикутника.
Якщо описаний чотирикутник ABCD має точки дотику W до AB і Y до CD, і якщо хорда WY перетинає діагональ BD у точці M, то відношення довжин дотичних дорівнює відношенню відрізків діагоналі BD.[16]
Властивості
Якщо чотирикутник описано навколо кола, то існує точка, рівновіддалена від усіх його сторін (центр вписаного кола). Щоб знайти цю точку, достатньо знайти точку перетину бісектрис двох сусідніх кутів цього чотирикутника.
Всі сторони описаного чотирикутника є дотичними до кола
Перпендикуляр, опущений з центра вписаного кола на будь-яку сторону описаного чотирикутника дорівнює радіусу кола.
Відрізки дотичних до вписаного кола, проведені з однієї вершини, рівні.
Якщо пряма розділяє описаний чотирикутник на два багатокутника з рівними площами та рівними периметрами, то ця пряма проходить через центр вписаного кола.[4]
Колінеарні точки
Нехай точки M та N — середини діагоналей описаного чотирикутника ABCD , I — центр його вписаного кола, точка K — центр відрізка FE, який сполучає точки перетину прямих, що містять протилежні сторони чотирикутника. Тоді, точки M,N, K та I є колінеарними, тобто лежать на одній прямій.[4]:cтор.42-43 ; Ця пряма називається прямою Ньютона чотирикутника ABCD.
Також на цій прямій лежить вершинний центроїд Gv чотирикутника ABCD (точка перетину бімедіан чотирикутника; центр тяжіння рівних мас, зосереджених у вершинах чотирикутника), причому точка Gv знаходиться в середині відрізка MN.
Якщо прямі, що містять протилежні сторони описаного чотирикутника ABCD перетинаються в точках F та E, а прямі, що містять протилежні сторони чотирикутника, сформованого точками дотику вписаного кола до сторін ABCD, перетинаються в точках L та M, то чотири точки F, E, L і M колінеарні.[17]:стор.169, Наслідок 3
Якщо вписане коло дотикається до сторін AB, BC, CD, DA у точках T1, T2, T3, T4 відповідно, і якщо N1, N2, N3, N4 є ізотомічно спряженими точками цих точок відносно відповідних сторін (тобто , AT1 = BN1 і так далі), то точка Нагеля описаного чотирикутника визначається як перетин прямих N1N3 та N2N4. Обидві ці лінії ділять периметр чотирикутника навпіл.
Що ще важливіше, точка Нагеля N, «центроїд площі» G і центр вписаного кола Iколінеарні в цьому порядку, і NG = 2GI.
Ця пряма називається лінією Нагеля описаного чотирикутника.[18]
В описаному чотирикутнику ABCD із центром вписаного кола I, діагоналі перетинаються в точці P.
Дві діагоналі описаного чотирикутника та дві хорди вписаного кола, що сполучають точки дотику на протилежних сторонах є конкурентні, тобто перетинаються в одні точці.[13][12]:стор.11
Один із способів довести це — граничний випадок теореми Бріаншона, яка стверджує, що шестикутник, усі сторони якого є дотичними до однієї коніки має три діагоналі, які перетинаються в одній точці. З описаного чотирикутника можна сформувати шестикутник із двома кутами 180°, розмістивши дві нові вершини у двох протилежних точках дотику; усі шість сторін цього шестикутника лежать на прямих, дотичних до вписаного кола, тому його діагоналі перетинаються в одній точці. Але дві з цих діагоналей збігаються з діагоналями описаного чотирикутника, а третя діагональ шестикутника є прямою, що проходить через дві протилежні точки дотику. Аналогічно доводиться перетин з хордою, що сполучає дві інші точки дотику.
Якщо продовження протилежних сторін описаного чотирикутника перетинаються в точках F і E, а діагоналі перетинаються в точці P, то пряма FE перпендикулярна до прямої, що містить відрізок IP, де I — центр вписаного кола.[17]:наслідок 4
Центр вписаного кола
Центр вписаного кола описаного чотирикутника лежить на його прямій Ньютона (пряма, що проходить через середини діагоналей)..[19]:Thm. 3
Якщо I — центр вписаного кола чотирикутника ABCD, то виконуються наступні рівності:
1. Відношення протилежних сторін чотирикутника:[12]:стор.15
5. Якщо M і N є серединами діагоналей AC і BD відповідно в описаному чотирикутнику ABCD з центром вписаного кола I, тоді[12]:стор.19[21]
де e, f, g і h— довжини дотичних в вершинах A, B, C і D відповідно.
Поєднуючи першу рівність із попередньою властивістю, отримаємо що «центроїд вершини» описаного чотирикутника збігається з центром вписаного кола тоді і тільки тоді, коли центр вписаного кола є серединою відрізка MN, що з'єднує середини діагоналей.
Якщо чотириланковий механізм зроблено у формі описаного чотирикутника, то він залишатиметься описаним при будь-якому положенні його ланок, за умови, що чотирикутник залишається опуклим.[22][23] (Таким чином, наприклад, якщо квадрат деформується в ромб, він залишається дотичним, хоча до меншого вписаного кола). Якщо одна сторона утримується у фіксованому положенні, то при деформації чотириланкового механізма центр вписаного кола окреслює коло радіусом , де a, b,c, d — сторони чотирикутника, а «p» — півпериметр.
Співвідношення у трикутниках, утворених при перетині діагоналей
Діагоналі описаного чотирикутника ABCD перетинаються в точці P, і розбивають його на чотири трикутники APB, BPC, CPD, DPA
Нехай r1, r2, r3, та r4 — радіуси вписаних в ці трикутники кіл. Чао та Симеонов довели, що чотирикутник є описаним тоді і тільки тоді, коли:[24]
Ця властивість була доведена за п'ять років до того Вейштейном .[2]:cтор.169[25]
Нехай h1, h2, h3, та h4 — висоти цих же трикутників, проведені з точки P на сторони описаного чотирикутника ABCD. Чотирикутник є описаним тоді і тільки тоді, коли:[8][25]
Нехай ra, rb, rc, та rd — радіуси зовнівписаних кіл цих же трикутників (кола торкаються до відповідної сторони чотирикутника та продовжень його діагоналей). Чотирикутник є описаним тоді і тільки тоді, коли:[6]:cтор.70
Якщо R1, R2, R3, та R4 — радіуси описаних кіл трикутників APB, BPC, CPD, DPA відповідно, то чотирикутник є описаним тоді і тільки тоді, коли:[26]:стор. 23–24
У 1996 році Вайнштейн був, мабуть, першим, хто довів ще одну цікаву властивість описаних чотирикутників, яка пізніше з'явилася в кількох журналах і на веб-сайтах.[6]:cтор.72-73 В ній стверджується, що центри вписаних кіл у трикутники APB, BPC, CPD, DPA є конциклічнимитоді і тільки тоді, коли чотирикутник описаний. Фактично, центри цих вписаних кіл утворюють ортодіагональнийвписаний чотирикутник.:[6]:cтор.74
Пов'язаним результатом є те, що вписані кола можна замінити на зовнівписані кола до тих самих трикутників (дотичні до сторін чотирикутника та продовжень його діагоналей). Таким чином, опуклий чотирикутник ABCD є описаним тоді і тільки тоді, коли центри зовнівписаних в трикутники APB, BPC, CPD, DPA кіл є вершинами вписаного чотирикутника (тобто лежать на одному колі). :[6]:cтор.73
Якщо Ea, Eb, Ec, та Ed центри зовнівписаних кіл в трикутники APB, BPC, CPD, та DPA відповідно, до сторін трикутників, що протилежні вершинам B і D (дотичні до діагоналі чотирикутника ABCD, продовження його сторони та продовження іншої діагоналі), то опуклий чотирикутник ABCD є описаним тоді і тільки тоді, коли точки Ea, Eb, Ec, та Ed лежать на одному колі. :[6]:cтор.79
Якщо Ra, Rb, Rc, та Rd — радіуси цих зовнівписаних кіл, то опуклий чотирикутник ABCD є описаним тоді і тільки тоді, коли:[6]:cтор.80
Нехай точка P перетину діагоналей чотирикутника розбиває діагональ АС на відрізки AP = p1 та PC = p2 , а діагональ BD на відрізки BP = q1 та PD = q2. Опуклий чотирикутник ABCD є описаним тоді і тільки тоді, коли виконується рівність:[27]
Умови, за яких описаний чотирикутник є певним видом чотирикутників
Ромб
Описаний чотирикутник є ромбомтоді і тільки тоді, коли його протилежні кути рівні. Зокрема, якщо протилежні кути прямі, то описаний чотирикутник є квадратом.
Центр вписаного кола лежить на діагоналі, яка є віссю симетрії.
Трапеція
Якщо вписане коло торкається до сторін AB та CD в точках W та Y відповідно, то описаний чотирикутник ABCD є трапецією з паралельними сторонами AB та CDтоді і тільки тоді, коли[28]:Теорема 2
Нехай вписане коло торкається до сторін чотирикутника AB, BC, CD, DA в точках W, X, Y, Z відповідно, тоді описаний чотирикутник ABCD є також і вписаним (а значить біцентричним) тоді і тільки тоді, коли виконується будь-яка з наступних умов:[3]:p.124[17][29]
Описаний чотирикутник є біцентричнимтоді і тільки тоді, коли радіус його вписаного кола більший за радіус будь-якого іншого описаного чотирикутника з такою ж послідовністю довжин сторін.[30]:pp.392–393