Гесіод A — найвиразніший і найдоступніший для спостережень концентричний кратер[1][2]. Діаметр — 15 км.
Репсольд A — кратер із невеликим другим валом на схилі головного. Діаметр — 8 км.
Лувіль DA — кратер із кільцем пагорбів. Діаметр — 11 км.
Концентричні кратери — тип імпактних кратерів діаметром порядку кілометрів із двома (зрідка більше) концентричними кільцями. Рідкісні об'єкти[1], відомі лише на Місяці[3][4] і, можливо, на Меркурії[5]. Походження їх внутрішніх кілець лишається загадковим, хоча є кілька гіпотез[5][6].
Подібну форму можуть мати і значно менші, і значно більші кратери, а також деякі кратери того ж масштабу, але їх розглядають окремо[5][6][7][8], бо вони, ймовірно, набувають її інакше[⇨][5][8]. Проте іноді концентричними називають і деякі з них[9][10][11][5].
Опис
Діаметр цих кратерів лежить у межах 2–28 км (найчастіше — 4–12 км) і в середньому становить 8 км[6][8][12]. Зовнішнім (головним) валом вони подібні до звичайних імпактних кратерів[8], але вирізняються наявністю внутрішнього кільця. Воно може бути і окремим валом, і уступом на схилі зовнішнього, і мати проміжний вигляд. Іноді воно ледве помітне, а іноді порівнянне з головним валом. Діаметр цього кільця становить 20–80% (у середньому 50%) діаметра головного[12][5]. Зазвичай вони межують безпосередньо, але іноді між ними лежить кільце пагорбів або (зрідка) смуга плоскої поверхні[5][6][8]. Центральна частина дна буває і плоскою, і увігнутою, і нерівною. Глибина концентричних кратерів менша, ніж у звичайних кратерів такого діаметра (зазвичай у 2–3 рази)[12][5].
Концентричні кратери, як і звичайні, можуть бути дещо витягнуті, що пояснюють ударом під малим кутом до горизонту (значну витягнутість мають 9 із 114 досліджених представників)[5]. При цьому внутрішнє кільце найчастіше[5], але не завжди[8], є круглим.
Хімічний склад ґрунту (принаймні вміст заліза й титану) в цих кратерах, згідно зі спектральними даними, такий, як і в околицях (окрім випадків, коли різницю створює неоднорідність поверхні до удару або подальше залиття лавою)[5][3][13].
Всі концентричні кратери доволі старі. Часто вони суттєво поруйновані, у жодного не збереглися промені, а у більшості — й ореол викидів (хоча іноді він прослідковується[8]). Деякі з цих кратерів залиті морською лавою (6 випадків із 114)[5]. Згідно з приблизними оцінками віку, зробленими на основі ступеню збереженості, 88 із цих 114 виявилися старшими за 3,8 млрд років, вік 9 лежить у межах 3,8–3,2 млрд років, а решти 17 — менший за 3,2 млрд років, але все ж доволі значний. Таким чином, більшість із них є доімбрійськими та ранньоімбрійськими, близько 10% — пізньоімбрійськими і близько 15% — ератосфенівськими. Молодших — коперниківських — серед них нема[5].
Порівняння з іншими типами кратерів
Кратери, схожі за формою на концентричні
Субкілометровий кратер концентричної будови в Океані Бур. Діаметр — 0,1 км.
Марсіанський кратер із центральною заглибиною. Діаметр — 50 км.
Двокільцевий імпактний басейн Шредінгер. Діаметр — 320 км.
Концентричні кратери — рідкісний виняток серед кратерів кілометрових розмірів[1]. Звичайні місячні кратери такого діаметра мають просту чашоподібну форму. Інколи — особливо у великих — в їх центрі є ділянка плоского дна (у деяких — із центральною гіркою), а на схилах можуть бути зсуви й тераси[14][15].
Для значно менших і значно більших кратерів двокільцевий вигляд, навпаки, є нормою (доки вони не втрачають його через руйнування[10][16]). Але великі[17] і, можливо, маленькі[9] кратери мають його з інших причин[8][5].
Ознаки концентричності часто трапляються у кратерів діаметром у сотні метрів, розташованих у місячних морях. Зокрема, на одній із ділянок Океану Бур ці ознаки виявлено в усіх молодих кратерів діаметром від 120 до 250 м, а також у деяких більших та менших (принаймні від 10 до 500 м)[9][18]. На відміну від концентричних кратерів кілометрових масштабів, вони зазвичай мають між краями зовнішньої та внутрішньої западини смугу плоского дна[5]. Іноді їх теж називають концентричними кратерами (англ.concentric craters)[9][10][18], а іноді — «терасними» чи «уступовими» кратерами (bench craters)[5]. На місячних материках їх нема[10]. За деякими спостереженнями, виразність концентричності у них зменшується з розміром[9][10][18]. Ці спостереження, морфологічні відмінності, а також те, що кілометрові концентричні кратери трапляються і в морях, і на материках, вказують на те, що концентричність кілометрових і субкілометрових кратерів має різну природу[9][8][5]. У других її пояснюють шаруватістю ґрунту, а для перших це лише одна з гіпотез[7][5]. Аналоги субкілометрових концентричних кратерів Місяця відомі й на інших небесних тілах, де вони іноді сягають більших розмірів (зокрема на Марсі[19][5] та Фобосі[11]).
На деяких небесних тілах відомі й інші об'єкти подібного вигляду — кратери з центральною заглибиною (англ.central pit craters). Вони найпоширеніші й найвиразніші на Марсі, Ганімеді та Каллісто, але трапляються й на Меркурії, Землі та Місяці[20][21]. Їх заглибина може лежати на центральній гірці або (за її відсутності) на рівному дні; часто вона оточена невеликим валом. Між нею та зовнішнім валом є кільцева ділянка більш чи менш плоского дна, що для концентричних кратерів нехарактерне. Діаметр заглибини у випадку Марса становить 2–48 % діаметра кратера, у випадку Ганімеда та Каллісто — 10–50 %[5], а у випадку Місяця — 5–29 %[21]. Вік подібних об'єктів Марса, Ганімеда[5] та Місяця[21] варіює в дуже широких межах; серед них є й дуже молоді. На Місяці відомо кілька десятків таких кратерів; вони розподілені поверхнею значно рівномірніше за концентричні, їх розмір становить 9–57 км, а заглибини мають доволі нерівні краї[21]. Походження цих заглибин неясне; воно може бути різним у різних випадках[21][20]. Для марсіанських кратерів його пояснюють вибухом при нагріві підповерхневого льоду імпактним розплавом[22], але для місячних та меркуріанських це неможливо через відсутність значної кількості льоду та летких речовин взагалі[21]. Відмінності форми, розміру, просторового та вікового розподілу цих та концентричних кратерів вказують на їх різну природу[5].
Багатокільцева будова є типовою і для гігантських кратерів (басейнів). У випадку Місяця вона з'являється за діаметра кратера понад 140–175 км[23]. Для басейнів появу додаткових кілець пояснюють переважно іншими причинами, ніж для кратерів кілометрового масштабу[17]. Проти їх спільної природи свідчать різко відмінний розмір, різний просторовий розподіл і низка морфологічних відмінностей[7][5]. З іншого боку, висувалося й припущення, що кільця басейнів мають ту ж причину, що й кільця субкілометрових (і, можливо, кілометрових) кратерів — шаруватість субстрату[24][25].
Розповсюдження
Ймовірний концентричний кратер на Меркурії[5]. Діаметр — 10 км.
Безіменний кратер із половинчастим другим валом. Щодо його утворення є, зокрема, версії про випадковий збіг двох ударів[12] та про зсув половини головного валу[26]. Діаметр — 9 км.
Нетиповий кратер із ознаками концентричності. Діаметр — 6 км.
Безіменний концентричний кратер неправильної форми. Розмір — 5 км.
Станом на 2014 рік кратери цього типу точно ідентифіковані лише на Місяці. Один об'єкт, для якого припускають таку ж природу, знайдено на Меркурії[5] — найбільш подібному до Місяця тілі Сонячної системи. Кратери схожої форми на інших небесних тілах, ймовірно, мають інше походження[5].
Оскільки концентричні кратери невеликі й часто невиразні, їх кількість визначити важко. Каталог, складений 2014 року, містить 114 місячних кратерів із більшими чи меншими ознаками концентричності[5][6], причому трьома роками раніше їх нараховували вдвічі менше[7]. Зазвичай вони лежать поблизу берегів морів (як із морського, так і з материкового боку). За даними 1978 року (отриманими приблизно за 50 об'єктами), це спостерігається в 70 % випадків. 20 % розташовані в більш материкових областях, але так само поблизу місць виходу на поверхню морської лави. Решта — 10 % — знаходяться в чисто материковій місцевості. В центральних областях морів концентричних кратерів не буває[8][5]. Їх розподіл дуже схожий на розподіл великих кратерів із розтрісканим дном, всередині яких вони нерідко й трапляються[7][6][5][27]. Значної схильності до групування в концентричних кратерів нема: найчастіше вони розкидані далеко один від одного[3], хоча є й винятки[12].
Падіння в одне місце двох астероїдів один за одним. Вони можуть бути фрагментами єдиного тіла, розірваного припливними силами, і тому летіти поруч по одній траєкторії[28]. Цій гіпотезі суперечить невипадковість просторового розподілу таких кратерів[8][3][7]. Проте це не виключає можливість, що деякі з них утворилися саме так[12].
Утворення внутрішнього валу лавою, що підіймається з надр. Можливо, в центрі метеоритного кратера виростає вулкан із власним кратером[29], а можливо, лава виступає лише по краях метеоритного кратера, де й утворює кільце[30]. В будь-якому випадку ця лава повинна бути достатньо в'язкою або вивергатися достатньо повільно, інакше замість височини вона утворить звичайний плоский покрив[8]. Також була висунута версія, що внутрішній вал є кільцевою дайкою, що з якихось причин височіє над поверхнею[31]. Вулканізм може створити й більше одного валу: на Землі відомі вкладені один в інший кратери, створені послідовними виверженнями, що чергувалися з обваленнями чи вибухами[29]. Відповідно, висувалися й ідеї про чисто вулканічну природу концентричних кратерів, але цьому суперечить подібність їх зовнішнього валу (а у деяких — і решток ореолу викидів) до відповідних структур звичайних метеоритних кратерів[8]. Проблемою вулканічної версії є однаковість хімічного складу ґрунту в кратері й поза ним[3][7][5][13].
Підняття дна кратера лавою, що не доходить до поверхні й застигає на глибині (інтрузія)[32]. Ця гіпотеза, як і попередня, потребує додаткового пояснення, чому в кратері утворюється саме кільцеподібна височина. Можливо, припідняте дно згодом обвалюється в центрі, а можливо, підіймається тільки периферична частина, де цьому не заважає шар застиглого імпактного розплаву[3][33]. На користь цієї та попередньої версій свідчить розташування цих кратерів здебільшого в місцях, багатих на прояви вулканічної активності, відсутність серед них молодих (ця активність на Місяці вже вщухла) та відносно мала глибина[5][3][8][12]. Інтрузією лави пояснюють також розтріскування дна, що спостерігається у багатьох місячних кратерів (які мають такий же просторовий розподіл, як концентричні, але, як правило, більший розмір)[7][6][27]. Існує припущення, що за діаметра кратера >15 км інтрузія спричиняє появу тріщин, а за меншого — появу другого валу[5]. Є кратер, що має і друге кільце, і тріщини (Шлютер X).
Удар у шарувату поверхню. Верхній шар ґрунту менш міцний за нижній через подрібнення метеоритним бомбардуванням. Вибух при ударі в такий ґрунт може створити два вкладені кратери: великий у верхньому шарі й маленький — у нижньому. Це вдалося змоделювати в лабораторії[10][9][34] та на комп'ютері[35]. Також дієвість цього механізму підтверджена дослідженнями кількох дрібних кратерів, зробленими астронавтами «Аполлонів»[36]. Кратерів, появу яких пояснюють саме так, у місячних морях дуже багато[9], причому на материках, де ґрунт подрібнений до дуже великої глибини, їх нема[10]. Однак деякі міркування (див. вище) вказують на те, що в такий спосіб можуть з'являтися лише невеликі — до сотень метрів — кратери такої форми, хоча остаточно це не з'ясовано[9]. Інші проблеми застосування цієї версії до концентричних кратерів кілометрового масштабу — відсутність серед них молодих[5], звичний вигляд більшості сусідніх із ними кратерів[32][7] і те, що вони трапляються і в морях, і на материках[8], а також деякі морфологічні особливості (зокрема кільце пагорбів у деяких представників)[5].
Формування внутрішнього валу з ґрунту, зсунутого зі схилу зовнішнього. Обвалені краї — звична річ для місячних кратерів, більших за 13–15 км[14]; часто зсуви створюють на їх краях тераси. Але ці тераси зазвичай численні й невеликі, мають неправильну форму й не охоплюють весь периметр кратера[5]. Також ця версія не пояснює переважне розташування концентричних кратерів по берегах морів[3][7] та відсутність серед них коперниківських[7]. За деякими оцінками, на її користь не свідчить практично нічого[30]; за іншими, вона пояснює принаймні кільця пагорбів, що є у деяких концентричних кратерах[26].
Приклади
Найдоступніший для спостережень концентричний кратер — Гесіод A на півдні Моря Хмар[1][2][33]. Завдяки відносно великому розміру (15 км) та добрій збереженості його можна роздивитись у телескоп із апертурою близько 11 см, тоді як інші — не менш ніж у 15-сантиметровий. Інші примітні приклади — 11-кілометровий Крозьє H на західному березі Моря Достатку та 7-кілометровий Март у Болоті Епідемій. Останній, незважаючи на малий розмір, добре помітний завдяки великій яскравості. Його видно навіть на повному Місяці, де не проявляється рельєф поверхні. Це стосується й деяких інших концентричних кратерів[33].
Різноманіття концентричних кратерів (у дужках — діаметр):
Безіменний (13 км)
Копф C (14 км)
Груйтуйзен K (6 км)
Безіменний (7 км)
Безіменний (8 км)
Гамбар J (8 км)
Дамуазо D (17 км)
Безіменний (12 км)
Белл E (16 км)
Безіменний (6 км)
Дамуазо BA (9 км)
Лагранж T (12 км)
Аполлоній N (11 км)
Безіменний (9 км)
Крозьє H (11 км)
Розташування деяких концентричних кратерів. На перших двох знімках — типові випадки: представники, що лежать у великому кратері з тріщинами на дні та в прибережній зоні моря. На наступних трьох — рідкісні екземпляри, що знаходяться на вулканічних або інтрузивних куполах (малопомітні низькі просторі височини з округлими обрисами) та на морській гряді. Два кратери з ознаками концентричності на передостанньому знімку — Архіт G та безіменний — є також рідкісним випадком суміжності таких об'єктів[37].
Два концентричні кратери в великому кратері з тріщинами на дні
↑ абвгдежиTrang D. (2010). The Origin of Lunar Concentric Craters. Geological Society of America Abstracts with Programs, Vol. 42, No. 5, p. 304 (2010 GSA Denver Annual Meeting). Архів оригіналу за 15 березня 2016. Процитовано 4 листопада 2015.
↑ абвгдежиклмTrang, D.; Gillis-Davis, J. J.; Hawke, B. R.; Bussey, D. B. J. (2011). The Origin of Lunar Concentric Craters(PDF). 42nd Lunar and Planetary Science Conference, held March 7-11, 2011 at The Woodlands, Texas. LPI Contribution No. 1608, p.1698. Bibcode:2011LPI....42.1698T. Архів оригіналу(PDF) за 4 березня 2016. Процитовано 4 листопада 2015.
↑ абвгдежEskildsen H. (2014). Concentric Lunar Craters(PDF). The Strolling Astronomer. 56 (1): 36—44. Архів оригіналу(PDF) за 10 жовтня 2015. Процитовано 4 листопада 2015.
↑Wilhelms, D. E.; Hodges, C. A.; Pike, R. J.Nested-crater model of lunar ringed basins // Impact and explosion cratering: Planetary and terrestrial implications; Proceedings of the Symposium on Planetary Cratering Mechanics, Flagstaff, Ariz., September 13-17, 1976. (A78-44030 19-91) / D. J. Roddy, R. O. Pepin, R. B. Merrill. — New York : Pergamon Press, 1977. — P. 539–562. — Bibcode:1977iecp.symp..539W.
↑ абFitz-Gerald, B. (December 2012). Concentric Craters(PDF). The Moon. Occasional papers of the Lunar Section of the British Astronomical Association. 2: 1—13. Архів оригіналу(PDF) за 28 травня 2015. Процитовано 4 листопада 2015.
↑Eskildsen H. (January 2013). Archytas G Concentric Crater(PDF). Selenology Today (31): 25—28. Архів оригіналу(PDF) за 28 лютого 2013. Процитовано 4 листопада 2015.
Wood, C. A. (1978). Lunar Concentric Craters. Lunar and Planetary Science IX: 1264—1266. Bibcode:1978LPI.....9.1264W. — містить каталог 51 кратера (однак концентричність деяких згодом не підтвердилася).
Trang, D.; Gillis-Davis, J. J.; Hawke, B. R.; Bussey, D. B. J. (2011). The Origin of Lunar Concentric Craters(PDF). 42nd Lunar and Planetary Science Conference, held March 7-11, 2011 at The Woodlands, Texas. LPI Contribution No. 1608, p.1698. Bibcode:2011LPI....42.1698T. Архів оригіналу(PDF) за 4 березня 2016. Процитовано 4 листопада 2015.
Fitz-Gerald, B. (December 2012). Concentric Craters(PDF). The Moon. Occasional papers of the Lunar Section of the British Astronomical Association. 2: 1—13. Архів оригіналу(PDF) за 28 травня 2015. Процитовано 4 листопада 2015.
Eskildsen H. (2014). Concentric Lunar Craters(PDF). The Strolling Astronomer. 56 (1): 36—44. Архів оригіналу(PDF) за 10 жовтня 2015. Процитовано 4 листопада 2015. — містить каталог 55 концентричних кратерів (знімки).
Eskildsen H., Lena R. (November 2011). Humboldt: Concentric Crater and LPDs(PDF). Selenology Today (25): 1—16. Архів оригіналу(PDF) за 19 листопада 2011. Процитовано 4 листопада 2015.
Eskildsen H. (January 2013). Archytas G Concentric Crater(PDF). Selenology Today (31): 25—28. Архів оригіналу(PDF) за 28 лютого 2013. Процитовано 4 листопада 2015.
В Википедии есть статьи о других людях с такой фамилией, см. Литвин; Литвин, Владимир. Владимир Михайлович Литвинукр. Володимир Михайлович Литвин 9-й председатель Верховной рады Украины 9 декабря 2008 — 12 декабря 2012 Предшественник Арсений ЯценюкАлександр Лавринович (и. о.)
Cet article est une ébauche concernant une localité kosovare. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Zubin Potok Zubin Potok, Зубин Поток Héraldique L'église de la Sainte-Trinité à Zubin Potok Administration Pays Kosovo District Mitrovicë/Kosovska Mitrovica Commune Zubin Potok Démographie Population 1 724 hab. (est. 2009) Géographie Coordonnées 42° 54′ 52″...
Adalimumab Identification No CAS 331731-18-1 No ECHA 100.224.376 Code ATC L04AB04 DrugBank DB00051 Propriétés chimiques Formule C6428H9912N1694O1987S46 [Isomères] Masse molaire[1] 144 188,628 ± 7,001 g/mol C 53,54 %, H 6,93 %, N 16,46 %, O 22,05 %, S 1,02 %, Unités du SI et CNTP, sauf indication contraire. modifier L'adalimumab est un anticorps monoclonal thérapeutiqu...
Major League Baseball franchise in San Francisco, California, US This article is about the baseball team formerly known as the New York Giants. For other uses, see New York Giants (disambiguation). San Francisco Giants 2023 San Francisco Giants seasonEstablished in 1883Based in San Francisco since 1958 Team logoCap insignia Major league affiliations National League (1883–present) West Division (1969–present) Current uniformRetired numbersNYNY3411202224252730364442Colors Black, orange, met...
هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2017) جمرة الماء هي فترة من فترات السّنة، حسب التّقويم «العربي» أ...
Cet article est une ébauche concernant un peintre serbe. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Arsa TeodorovićNaissance Vers 1768Perlez, Archiduché d'AutricheDécès 13 février 1826Novi Sad, Empire d'AutricheActivité Peintremodifier - modifier le code - modifier Wikidata L'iconostase de l'église d'Almaš. Arsa Teodorović (en serbe cyrillique : Арса Теодоровић ; n
Chrissy Houlahan Christina Marie Chrissy Houlahan (/ˈhuːləhæn/ hoo-LƏ-hann; née Jampoler; lahir 5 Juni 1967)[1] adalah seorang politikus, insinyur, dan mantan perwira Angkatan Udara Amerika Serikat. Ia adalah anggota Partai Demokrat. Referensi ^ Chrissy Houlahan For U.S. Congress. Chrissy for Congress (dalam bahasa Inggris). Diakses tanggal June 30, 2020. Pranala luar Wikimedia Commons memiliki media mengenai Chrissy Houlahan. Congresswoman Chrissy Houlahan official U.S. H...
Santo ThyrsosPatung Santo Tirso di St. Paulinskirche, TrierMeninggal251 MDihormati diGereja Katolik RomaPesta28 JanuariPelindungSisteron Santo Thyrsus atau Thyrsos, (Tirso (Spanyol);(Portugis); Thyrse (Prancis)) (†251), merupakan seorang martir Kristen. Dia dibunuh karena imannya di Sozopolis (Apollonia), Frigia, selama penganiayaan Decius. Leucius (Leukios) dan Callinicus (Kallinikos) menjadi martir dengannya. Tradisi menyatakan bahwa Thyrsos mengalami banyak siksaan dan dijatuhi hukuman u...
North Sea coal mine 54°54′52″N 1°23′18″W / 54.91444°N 1.38833°W / 54.91444; -1.38833 Miners in the cage ready for their descent, Wearmouth Colliery, 1993. Monkwearmouth Colliery (or Wearmouth Colliery) was a major North Sea coal mine located on the north bank of the River Wear, located in Sunderland. It was the largest mine in Sunderland and one of the most important in County Durham in northeast England. First opened in 1835 and in spite of the many accide...
For the Jessica Simpson song, see ReJoyce: The Christmas Album § Track listing. 2012 single by Backstreet BoysIt's Christmas Time AgainSingle by Backstreet Boysfrom the album A Very Backstreet Christmas ReleasedNovember 6, 2012RecordedOctober 18, 2012[1]Los Angeles, CAGenrePop, ChristmasLength3:23LabelK-BAHN[2]Songwriter(s)Nick Carter, Howie Dorough, Mika Guillory, Morgan Taylor Reid[3]Producer(s)Morgan Taylor Reid[4]Backstreet Boys singles chronology...
Overview of Internet censorship in South Korea InternetAn Opte Project visualization of routing paths through a portion of the Internet General Access Activism Censorship Data activism Democracy Digital divide Digital rights Freedom Freedom of information Internet phenomena Net neutrality Privacy Right to Internet access Slacktivism Sociology Usage Vigilantism Virtual community Virtual volunteering Governance IGF NRO IANA ICANN IETF ISOC Information infrastructure Domain Name System Hypertext...
1957 Indian filmPayalPosterDirected byJoseph Thaliath Jr.Based onMallika (1957)Produced byJoseph Thaliath Jr.StarringPadminiSunil DuttMusic byHemant KumarProductioncompanyMadras TalkiesRelease date5 July 1957CountryIndiaLanguageHindi Payal is a 1957 Indian Hindi-language film,[1] directed by Joseph Thaliath Jr. A remake of the director's own Tamil film Mallika (1957), Payal stars Padmini and Sunil Dutt in the lead roles.[2] Baby Naaz, David, Ragini, Agha, Achala Sachdev and Me...
Children's song Not to be confused with My Bucket's Got a Hole in It. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: There's a Hole in My Bucket – news · newspapers · books · scholar · JSTOR (March 2017) (Learn how and when to remove this template message) There's a Hole in My BucketNursery rhymePublishedci...
Austrian baroque architect and military engineer Johann Lukas von HildebrandtPortrait, eighteenth centuryBorn(1668-11-14)14 November 1668Genoa, Republic of GenoaDied16 November 1745(1745-11-16) (aged 77)Vienna, AustriaOccupationArchitectBuildings St. Peter's Church, Vienna Palais Schwarzenberg Belvedere Johann Lukas von Hildebrandt (14 November 1668 – 16 November 1745) was an Austrian baroque architect and military engineer who designed stately buildings and churches and whose work had...
Palagan AmbarawaBagian dari Revolusi Nasional IndonesiaTentara Inggris di Ambarawa, 1945.Tanggal20 Oktober – 15 Desember 1945(1 bulan, 3 minggu, 4 hari)LokasiAmbarawa, IndonesiaHasil Kemenangan Indonesia Penarikan pasukan Inggris dari Ambarawa dan MagelangPerubahanwilayah Ambarawa direbut kembali oleh pasukan IndonesiaPihak terlibat Indonesia Sekutu Kekaisaran BritaniaDidukung oleh:NICATokoh dan pemimpin Kol. SoedirmanLetKol. Isdiman †LetKol.Gatot SoebrotoLetKol.M. Sarbini Brig.Bethe...
Book by Roy Wallis The Road to Total Freedom CoverAuthorRoy WallisCountryUnited StatesLanguageEnglishSubjectScientologyGenreNon-fictionPublisherHeinemannPublication date1976Media typePrint (Hardcover)Pages282ISBN0-231-04200-0Preceded bySectarianism Followed byCulture and Curing Part of a series onScientology Beliefs and practices Scientology Dianetics History Bridge to Total Freedom Thetan OT Auditing Ethics and justice Books Timeline Church of Scientology L. Ron Hub...
FC UtrechthNama lengkapFootball Club UtrechtJulukanUtregBerdiri1 Juli 1970; 53 tahun lalu (1970-07-01)StadionStadion GalgenwaardUtrecht(Kapasitas: 24.426)KetuaWilco van SchaikManajerJohn van den BromLigaEredivisie2018–2019Eredivisie, 6thSitus webSitus web resmi klub Kostum kandang Kostum tandang Kostum ketiga Musim ini FC Utrecht (pengucapan bahasa Belanda: [ɛf.ˈseː ˈy.trɛxt]) adalah klub sepak bola Belanda yang berbasi di kota Utrecht. Klub ini adalah merger dari tiga k...
Kanbe Domain神戸藩under Tokugawa shogunate Japan1601–1871CapitalKanbe CastleArea • Coordinates34°52′44.75″N 136°34′38.73″E / 34.8790972°N 136.5774250°E / 34.8790972; 136.5774250 History • TypeDaimyō Historical eraEdo period• Established 1601• Disestablished 1871 Today part ofpart of Mie Prefecture Kanbe Park, on the site of Kanbe Castle Kanbe Domain (神戸藩, Kanbe-han) was a feudal domain under the Tokugawa sho...