Водоник нема одређен положај у периодном систему и углавном се проучава засебно. Може се сматрати равноправним чланом 1. или 17. групе. Разлог томе је да поседује један протон и један валентни електрон као и алкални метали, али од њих се разликује много већом енергијом јонизације. За стабилну електронску конфигурацију недостаје му један електрон, што наводи да би се водоник могао сматрати халогеним елементом, али од њих има мању електронегативност и афинитет према електрону.
Овај елемент сачињава 75% видљиве масе свемира, те је исходишна материја из које су нуклеарном фузијом настали остали елементи. Звезде у главном низу се углавном састоје од водоника, у облику плазме. Елементарни водоник на Земљи је присутан у врло малим количинама.[3]
Елементарни водоник састоји се од обичног водоника (протијум, 1H) (>99,98%), док остатак (готово 0,02%) чини тешки водоник (деутеријум, 2H, D) с траговима супертешког водика (трицијума, 3H, T).[4] Пошто је један од стабилних изотопа два пута тежи од другог, они се међусобно доста разликују по хемијским својствима.[5] Водоник ствара хемијске везе са највећим бројем елемената, посебно у органским једињењима. При стандардном притиску и температури, водоник је гас без боје, мириса и укуса, 14,4 пута је лакши од ваздуха. Неотрован је. Слабо је растворљив у поларним, а боље у неполарним растварачима.
Индустријски се највише добија из земног гаса, а ређе електролизомводе. Највише се користи у производњи фосилних горива (хидрокраковање – повећање квалитета горива) и за добивање амонијака, у производњи вештачких ђубрива. У металургији није пожељан, јер многе метале чини ломљивим и кртим, па ствара потешкоће у изградњи цевовода и металних спремника.[6][7]
Историја
Водоник (лат.Hydrogenium) је дефинисао БританацХенри Кавендиш1766. Он није први изоловао овај елемент, већ је то урадио Парацелзус у 16. веку реакцијом метала и јаке киселине[8], и назвао га „запаљивим ваздухом“. Кавендиш је формирао водоник реакцијом цинка и хлороводоничне киселине. Дефинисао је о ком гасу је реч и доказао да реакцијом водоника и кисеоника настаје вода. Због тог својства Антоан Лавоазје га 1783. назива hydrogène, од грчког "онај који ствара воду" (грч. ὕδωρ = вода, γενής = стваратељ).
Жак Шарлс је изумео први балон на топли ваздух 1783. године. Фердинанд фон Цепелин је направио летилицу на водоник, која је имала први лет 1900, и касније је названа цепелин.
Пре развоја квантне механике, Максвел је уочио да специфични топлотни капацитет молекула H2 има необјашњиво одступање на ниским температурама, где се H2 почиње више понашати као једноатомни гас. Према квантној теорији, та појава се дешава због простора енергетских нивоа, који су нашироко распоређени код H2 због мале масе. Тај велики простор енергетских нивоа онемогућује равномерну расподелу топлотне енергије код водоника на ниским температурама.[12]
Својства
При стандардним условима притиска и температуре, водоник је гас без боје, мириса и укуса, који је 14.4 пута лакши од ваздуха. Није отрован. Слабо је растворан у поларним, а боље у неполарним растварачима.
Охлађен на температуру кључања, кондензује се у безбојну течност која је најлакша од свих течности. Даљим одвођењем топлоте долази до очвршћавања у прозирну чврсту материју хексагоналне кристалне структуре.
Запаљив је са границом експлозивности у ваздуху од 4-94%. Минимална енергија иницијације паљења 0,02 MJ. Температура пламена при стехиометријском сагоревању је 1930 °C. Запаљен на ваздуху при 560 °C, изгара готово невидљивим пламеном формирајући воду:
На собној температури није посебно реактиван, док при вишим температурама улази у низ реакција. Раствара се у многим металима, као што је платина.
При собној температури без катализатора, реагује само с флуором и ванадијумом у праху. Узрок слабој реактивности молекуларног водоника при собној температури је јачина једноструке ковалентне везе молекула. Та веза је најјача од свих једноструких ковалентних веза између два истоимена атома. При повишеној температури спаја се и с кисеоником из многих оксида, те тако делује као редукционо средство.
Линијски спектар водоника је приказан на траци црне позадине са уским линијама различитих боја: две љубичасте, једна плава и једна црвена. Емисионе линије спектра водоника припадају видљивом спектру светлости. То су четири видљиве линије Балмерове серије.
Због релативно једноставне атомске структуре, тј. због тога што се атом водоника састоји само од протона и електрона, уз спектар светлости који производи или га апсорбује, водоник је био централна фигура за развој теорије структуре атома. Штавише, одговарајућа једноставност молекула водоника и одговарајућих катјона H2+, водила је до потпунијег разумевања природе хемијских веза, која је уследила убрзо након појаве квантно-механичког третмана атома водоника средином 1920-их.
Међу првим примећеним квантним ефектима код водоника је управо његов линијски спектар, пола века пре увођења теорије квантне механичке. А. Ангстрем је 1853. направио експеримент у којем је гас водоника у стакленом суду (при ниском притиску) побуђивао електричном струјом (довођењем напона на крајеве суда). Овај гас је емитовао зрачење из којег је издвојени узак сноп доведен на призму давао правилно раздвојена четири снопа светлости различитих боја.
Други примећен ефекат (није био објашњен у то време) је произашао из Максвеловог посматрања водоника. Максвел је приметио да специфична топлота H2 испод собне температуре, необјашњиво одступа од оне код других диатомних гасова и почиње да личи на ону код једноатомских гасова на Криогеним температурама. Овај ефекат је касније објашњен уз помоћ квантне теорије, односно утицајем квантоване енергије нивоа на расподелу топлотне енергије у ротационо кретање код водоника на ниским температурама. Диатомни гасови који се састоје од тежих атома немају широко распоређене нивое и не показују исти ефекат као водоник.
У свемиру водоник се углавном налази у атомском стању или као плазма, чија су својства сасвим друкчија од молекуларног водоника H2. Као плазма, водоникови електрони и протони нису повезани заједно, и производе веома јаку електричну проводност и велику емисију топлоте (ствара се електромагнетско зрачење, укључујући светлост са Сунца и осталих звезда). На наелектрисане честице водоника снажно утичу магнетна и електрична поља. На пример, Сунчев ветар делује на Земљину магнетосферу, стварајући поларну светлост и Биркеландову струју.[15]
Елементарни водоник на Земљи је широко распрострањен, мада у малим количинама. Присутан је у атмосфери, земном гасу, вулканским гасовима, итд. Због тога што га гравитација тешко може задржати, водоник у горњим деловима атмосфере излази у свемир. Иако је водоник најзаступљенији елемент у васиони, на Земљи се јавља у малим количинама (0,9% у горњим слојевима), углавном у облику хемијских једињења (вода). У облику једињења, има га у огромним количинама, понајвише у облику воде, која прекрива готово две трећине Земљине површине. Саставни је део многих органских једињења, киселина и растварача. Неке алге и бактерије стварају гасовити водоник.[16] Он је он биогени елемент. По броју атома, трећи је, одмах након кисеоника и силицијума, а по масеном уделу је на десетом месту.
У слободном облику јавља се у виду двоатомних молекула H2. Катјон водоника H+ (у воденим растворима је хидратисан: оксонијум јон H3O+, Цунделов (Zundel) катјон, H5O2+, Ајгенов (Eigen) катјон, H9O4+) настаје услед дисоцијације киселина. Концентрација водоникових јона изражава се помоћу pH вредности.
Добијање
Лабораторијско добијање
Најчешће се добија онако како га је први пут добио Кавендиш, тј. реакцијом цинка и хлороводичне киселине, уместо које се често користи и разређена сумпорна киселина:
Zn(s) + 2 H+ → Zn2+ + H2(g)
За развијање гасова у лабораторији најпогоднији је Кипов апарат, јер се реакција у њему може прекинути и на тај начин производе само потребне количине гаса.
Угљен(II) оксид од водоника се одваја реакцијом с додатном воденом паром, при чему настаје додатна количина водоника:
CO(g) + H2O(g) → H2(g) + CO2(g)
Настали угљен(IV) оксид уклања се из смеше апсорпцијом у лужини или испирањем водом под притиском. Лако се уклања и хлађењем течним ваздухом. Трагови неизреагованог угљеник(II) оксида уклањају се превођењем гаса преко загрејаног натријум хидроксида при чему настаје натријум метаноат.
Термохемијски процеси
Постоји више од 200 термохемијских процеса, који се могу искористити за раздвајање воде. Око 10-так процеса се истражује и испитује за добивање водоника и кисеоника из воде, те грејањем без употребе електричне струје, а ти су процеси на пример: циклус гвожђе оксида, циклус церијум (IV) оксид - церијум (III) оксид, циклус цинк – цинк оксид, циклус сумпор – јод, циклус бакар – хлор и циклус хибридни сумпор. Велики број лабораторија у Француској, Немачкој, Грчкој, Јапану и САД развијају термохемијске процесе уз кориштење Сунчеве енергије и воде.[17][18]
Анаеробна корозија
Без присуства кисеоника, гвожђе и легирани челик се полако оксидују уз помоћ протона из воде, који се претварају у гасовити водоник H2. Анаеробна корозија ствара прво жељезни хидроксид (зелена корозија) и та се хемијска реакција може описати као:
Fe + 2 H2O → Fe(OH)2 + H2
У другом кораку, без присуства кисеоника, гвожђе хидроксид се може оксидовати уз помоћ протона из воде и створа се магнетит и гасовити водоник. Тај се процес назива Шикоровом реакцијом:
3 Fe(OH)2 → Fe3O4 + 2 H2O + H2
Добро кристализирани магнетит (Fe3O4) је термодинамички пуно стабилнији од гвожђе хидроксида. Тај се процес обично дешава за вриеме анаеробне корозије гвожђа и челика, у подземним водама које немају кисеоника, и у редукованим тлу у којем има доста влаге.
Геолошко стварање – серпентација
Без присуства кисеоника, у дубоким геолошким слојевима, који су далеко од Земљине атмосфере, гасовити водоник се ствара током процеса серпентације, што је анаеробна оксидација протона воде (H+) и гвожђе (Fe2+) силиката, који је присутан у кристалима фајалита (Fe2SiO4 – крајњи члан оливина). Та реакција доводи до стварања магнетита (Fe3O4), кварца (SiO2) и водоника (H2), на следећи начин:
3 Fe2SiO4 + 2 H2O → 2 Fe3O4 + 3 SiO2 + 3 H2
Једињења
Једињења водоника могу се поделити на једињења у којима је присутан у негативном (-1) и позитивном ступњу оксидације (+1). Прва се називају хидридима, и представљају мањину водоникових једињења, док су друга пуно заступљенија и важнија. Водоник је саставни је део живог света, у којем игра једну од кључних улога.
Ковалентна и органска једињења
На собној температури није реактиван, док при вишим температурама улази у низ реакција. Познати су милиони угљоводоника, који су подручје проучавања органске хемије. Водоник ствара једињења и са елементима који имају већу електронегативност, као што су халогени елементи (F, Cl, Br, I). Када се спаја са флуором, кисеоником или азотом, водоник се може везати јаком нековалентном везом, која се зове водонична веза, и која је критична у стабилности многих биолошких молекула. Водоник се везује и за мање електронегативне елементе, као што су метали и полуметали.
Хидриди
Хидриди су једињења разних хемијских елемената с водоником. s-блок чине елементи прве и друге групе периодног система елемената. p-блок чине елементи 13—17. групе периодног система елемената. То су најважнији хидриди, и често се користе у пракси. Деле се на киселе, базне, амфотерне и неутралне. Кисели хидриди су они хидриди који у реакцији с водом дају киселине. Базни хидриди у реакцији с водом дају базе. Амфотерни хидриди се зависно од реакције могу понашати и као киселине и као базе. Неутрални хидриди не реагирају с водом.
1H или протијум је далеко најзаступљенији изотоп водоника, којег има више од 99,98%. Има један протон и један електрон. За разлику од свих осталих изотопа, он нема неутрон.
2H или деутеријум, има један протон и један неутрон у нуклеусу, те један електрон. Сматра се да сав деутеријум у свемиру потиче још од времена Великог праска. Деутеријум није радиоактиван, и не преставља значајну опасност за здравље. Он се користи и код нуклеарне магнетно резонантне спектроскопије, за означавање нерадиоактивних материја у растварачу. Вода која садржи атоме деутеријума се назива тешком водом. Тешка вода се користи у нуклеарним реакторима за смањивање брзине брзих неутрона, као и за хлађење нуклеарних реактора. Деутеријум преставља могуће гориво за добивање електричне енергије из нуклеарне фузије.
3H или трицијум, има један протон и два неутрона у нуклеусу, те један електрон. Трицијум је радиоактиван, распада се у хелијум-3 изотоп, уз појаву бета-честица и има време полураспада од 12,32 године. Толико је радиоактиван да се користи за луминисцентне боје, које се користе и код сатова, код којих се може видети вријеме и у мраку. Стакло спречава да мала количина радиоактивности изађе. У природи се трицијум може наћи у врло малим количинама у атмосфери, а настаје услијед деловања космичких зрака. Трицијум може настати код тестирања нуклеарног оружја. Трицијум преставља могуће гориво за добивање електричне енергије из нуклеарне фузије. Он се користи у хемијским и биолошким експериментима као радиоактивни означивач.
Молекуларни изомери
Приликом испитивања вибрацијско-ротацијског спектра водоника пронађене су промене у интензитету ротацијских трака, које су протумачене хипотезом о постојању два облика водоника који се разликују по нуклеарним спиновима у молекулу водоника. Ако су спинови два протона из молекула антипаралелни, резултантни спин је нула, те је стање недегенерисано. Такав водоник зове се пара-водоник. Ако су паралелни, резултантни спин је 1, а стање је троструко дегенерисано, што доводи до орто-водоника.
При собној температури, елементарни се водоник састоји од 75% орто-водоника и 25% пара-водоника. Орто- и пара-водоник разликују се по неким физичким својствима, као што су енергија дисоцијације, топлотни капацитет, притисак паре и слично.
Између њих постоји равнотежа:
o-H2 ⇄ p-H2 < 0,
која се хлађењем помиче удесно.
На ниским температурама могуће је изоловати готово чисти пара-водоник, док чисти орто-водоник није могуће изоловати, јер повећањем температуре не долази до повећања његовог удела изнад 75%.
Однос између орто- и пара-водоника је врло битан код спремања течног водоника у спремник, јер претварање орто-водоника у пара-водоник ствара додатно топлоте, која може довести до испаравања, а тиме и губитка течног водоника. Због тога треба користити катализаторе, као што је гвожђе(III) оксид, активни угљеник, платинизирани азбест, метали ретких земаља, уранова једињења, хромов оксид и неки једињења никла.
Молекуларни облик јона триатомног водоника или H3+, је пронађен у међузвезданој материји, који је настао јонизацијом водоника са космичким зрацима. Тај облик молекула је такође пронађен у горњој атмосфери Јупитера. То је прилично стабилно у тим околинама, због малих температура и густине. То је један од најраширенијих јона у свемиру.
Примена
Водоник је врло важна индустријска сировина. Користи се, између осталог у:
У хемијском смислу, водоник није извор, већ спремник енергије, јер није природно набављив у елементарном облику. У случају успешне и одрживе нуклеарне фузије у нуклеарној електрани, био би извор огромних количина енергије.
Велике количине H2 се користе у нафтној и хемијској индустрији. Највећа примена је код побољшања фосилних горива и у производњи амонијака. У петрохемији H2 се користи у процесима као што су: хидрокрековање, каталитичко реформирање бензина, изомеризација и алкилација. H2 се исто користи у повећању засићења незасићених масти и уља (користи се за добивање маргарина). Такође је сировина за добивање хлороводоничне киселине, а користи се и као редукциони агенс за минералне сировине или руде.[19]
Водоник је изузетно растворан у многим ретким и прелазним металима, а растворан је и у нанокристалима и аморфним металима. Растворљивост у металима утиче на локалне деформације или нечистоће у кристалним решеткама, тако да метали постају кртији и ломљивији, што ствара велике проблеме у металургији, у изради цевовода и металних резервоара. Понекад се то може решити, ако водоник се прочисти проласком кроз дискове паладијума.[20]
Гасовити водоник H2 се користи за хлађење ротора електричних генератора у електранама, зато што има највећу топлотну проводљивост од свих гасова. Течни H2 се користи у испитивању суперпроводности код врло ниских температура. Будући да је гасовити водоник H2 скоро 15 пута лакши од ваздуха, некад се користио за балоне на врући ваздух.
У новије време, гасовити водоник H2 се меша са азотом, за добивање формирајућег гаса (око 5% водоника у азоту), који се користи код поступка лоцирања или утврђивања пропуштања код разних цевовода у аутомобилској, хемијској индустрији, електранама, ваздухопловству и телекомуникацијама. Водоник се користи као додатак храни (Е 949) за проверу конзервиране хране.[21]
Носилац енергије
Водоник није извор енергије, осим у могућим електранама на нуклеарну фузију, које би користиле деутеријум и трицијум, што је још далеко од комерцијалне употребе. Водонику који се добије из сунчевих, биолошких или електричних извора, потребно је више енергије него што од њега може добити изгарањем, зато он више има улогу као батерија, за складиштење енергије. Водоник се може добити из метана, али ти се извори називају неодрживим изворима енергије.[22]
Густина енергије по јединици запремине, за течни или компримирани водоник, је пуно мања од познатих фосилних горива, иако по јединици масе, густина енергије је већа. Ипак, о водонику се доста расправља као о будућем носиоцу енергије. Тако рецимо, везивање угљен-диоксида из ваздуха, може бити повезано са стварањем H2 као фосилног горива. Тада би водоник био релативно чисти извор енергије, уз мало испуштање азотних оксида, али без стварања угљен-диоксида. Ипак, улагање у инфраструктуру би било знантно.[23]
Производња полупроводника
У производњи полупроводника, водоник се користи за засићење лабилних веза у аморфном силицијуму и аморфном угљенику, да би им се повећао квалитет. Он је исто могући додатак у различитим оксидима, као: ZnO, SnO2, CdO, MgO, ZrO2, HfO2, La2O3, Y2O3, TiO2, SrTiO3, LaAlO3, SiO2, Al2O3, ZrSiO4, HfSiO4 и SrZrO3.[24]
Поступак и материјали
Рад са гасом захтева примену посебних прописа и мера заштите.
Препоручује се употреба легура алуминијума, магнезијума и никла. Могу се применити синтетски каучук и слични полимери (све само за гасовити водоник).
У челичним судовима - боцама, под притиском од 150 бара. Боце су појединачне или у батеријама - палетама са заједничким вентилом за пуњење и пражњење, у батеријама судова - боца трајно уграђеним на транспортно возило или у течном агрегатном стању специјалним транспортним возилима до резервоара корисника.
Биолошка улога
Водоник се као састојак воде, налази се у сваком биолошком организму у знатним количинама. Осим у води, налази се и у готово свим органским једињењима унутар организма, везан ковалентно за елементе попут угљеника или азота. У воденим растворима који су део сваког организма, присутан је у облику H3O+ јона, те као такав има изванредно важну, темељну улогу у регулацији ћелијских процеса.
Раздвајање воде у протоне, електроне и кисеоник, јавља се код готово свих биљака које врше фотосинтезу. Неки организми, као што су модрозелене алге су развиле и други корак, који се одвија у тами и којим се ствара гасовити водоник H2 уз помоћ специјалних хидрогеназа у хлоропласту. У току су испитивања на генетски модификованим модрозеленим алгама, с циљем њихове примене у стварању H2, чак и у присуству кисеоника, т.ј. њихове примене у биореакторима.[25]
^Haubold Hans, Mathai, A. M., 2007. [5] "Solar Thermonuclear Energy Generation", publisher=Columbia University, 2008.
^Storrie-Lombardi Lisa J.: "Surveys for z > 3 Damped Lyman-alpha Absorption Systems: the Evolution of Neutral Gas", journal=Astrophysical Journal, 2000.
^Wolfgang H. Berger, 2007. [6] "The Future of Methane", publisher=University of California, San Diego, 2008.
^[7] "Development of solar-powered thermochemical production of hydrogen from water"
^[8] "Development of Solar-Powered Thermochemical Production of Hydrogen from Water", DOE Hydrogen Program, 2007, Perret Robert, 2008.
^Chemistry Operations: 2003. [9] "Hydrogen|publisher=Los Alamos National Laboratory" 2008.
^Takeshita Wallace: "Hydrogen solubility in 1:5 compounds between yttrium or thorium and nickel or cobalt", journal=Inorganic Chemistry, 1974.
^McCarthy, John (1995). „Hydrogen”. Stanford University. Архивирано из оригинала 14. 3. 2008. г. Приступљено 15. 2. 2017.
^"DOE Seeks Applicants for Solicitation on the Employment Effects of a Transition to a Hydrogen Economy", publisher=US Department of Energy, 2006. [10]
^Van de Walle: "Hydrogen multicentre bonds", journal=Nature Materials, 2007.
Ferreira-Aparicio, P; Benito, M. J.; Sanz, J. L. (2005). „New Trends in Reforming Technologies: from Hydrogen Industrial Plants to Multifuel Microreformers”. Catalysis Reviews. 47 (4): 491—588. doi:10.1080/01614940500364958.
اضغط هنا للاطلاع على كيفية قراءة التصنيف ثنائيات التناظرالعصر: العصر الإدياكاري – الآن قك ك أ س د ف بر ث ج ط ب ن المرتبة التصنيفية عويلم [لغات أخرى][1] التصنيف العلمي النطاق: حقيقيات النوى المملكة: حيوانات العويلم: بعديات حقيقية غير مصنف: ثنائيات التناظرHatschek...
Australian right-wing commentator and former radio broadcaster Rugby playerAlan Jones AOJones in 2011Birth nameAlan Belford JonesDate of birth (1941-04-13) 13 April 1941 (age 82)Place of birthOakey, Queensland, AustraliaSchoolToowoomba Grammar SchoolUniversityKelvin Grove Teachers CollegeUniversity of Queensland BAUniversity of Oxford (non-degree course)Occupation(s)Radio presenterRugby league careerCoaching careerYears Team1991–93 Balmain TigersRugby union careerCoaching careerYears T...
Saint-Benoît Comuna delegada Saint-BenoîtLocalización de Saint-Benoît en FranciaCoordenadas 45°41′40″N 5°35′19″E / 45.694444444444, 5.5886111111111Entidad Comuna delegada • País Francia • Región Auvernia-Ródano-Alpes • Departamento Ain • Distrito Belley • Cantón Belley • Comuna Groslée-Saint-BenoîtAlcalde delegado Henri Soudan (2020-2026)Superficie • Total 21,65 km² Altitud • ...
У Вікіпедії є статті про інші значення цього терміна: Синдром (значення). Про білок SARS див. Серил-тРНК-синтаза. Тяжкий гострий респіраторний синдром (ТГРС) / SARS Коронавірус, який спричинює ТГРСКоронавірус, який спричинює ТГРССпеціальність пульмонологія, інфекційні хвор...
En geometría, una disposición de vértices es un conjunto de puntos en el espacio descritos por sus posiciones relativas. Pueden ser caracterizados por su uso en politopos. Por ejemplo, una disposición de vértices cuadrada se entiende como cuatro puntos en un plano, con ángulos y distancias iguales respecto a un punto central. Dos politopos comparten la misma disposición de vértices si comparten el mismo N-esqueleto. Disposición de vértices El mismo conjunto de vértices puede ser co...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2018) ديلان هيوز معلومات شخصية الميلاد 23 يناير 1985 (38 سنة) فانكوفر الطول 1.82 م (5 قدم 11 1⁄2 بوصة) مركز اللعب مهاجم الجنسية كندا مسيرة الشباب سنوا...
Ralph ForbesForbes dalam Daniel Boone (1936)LahirRalph Forbes Taylor(1904-09-30)30 September 1904London, InggrisMeninggal31 Maret 1951(1951-03-31) (umur 46)The Bronx, New York City, Amerika SerikatPekerjaanPemeranTahun aktif1923–1950Suami/istriRuth Chatterton (m. 1924; bercerai 1932) Heather Angel (m. 1934; bercerai 1941) Dora Sayers (m. 1946)R...
Problemas del Desarrollo País: MéxicoISSN: 0301-7036Idiomas: Español, InglésSitio Web: https://probdes.iiec.unam.mx[editar datos en Wikidata] Problemas del Desarrollo. Revista Latinoamericana de Economía es una revista trimestral científica y arbitrada. Es el órgano oficial del Instituto de Investigaciones Económicas de la Universidad Nacional Autónoma de México, atento a la propuesta de sus fundadores, recibe todas las interpretaciones teóricas que con rigor científico,...
Berkas:Purbaya Yudhi Sadewa 1.jpgPotret Resmi dari Dokumentasi LPS 2023. Ketua Dewan Komisioner Lembaga Penjamin Simpanan 03 September 2020 - sekarang. Deputi Bidang Koordinasi Kedaulatan Maritim dan Energi, Kementerian Koordinator Bidang Kemaritiman dan Investasi Mei 2018-September 2020 Staf Khusus Bidang Ekonomi Menteri Koordinator Bidang Kemaritiman, Kementerian Koordinator Bidang Kemaritiman dan Investasi November 2015-Juli 2016 Gubernur Organization of the Petroleum Exporting Countries (...
Distrik Jung 중구Distrik중구 · 中區SungryemunLokasi Jung-gu di SeoulRegionSudogwonKota IstimewaSeoulDong15Luas • Total9,96 km2 (385 sq mi)Populasi (2010[1]) • Total121.144 • Kepadatan0,12/km2 (0,32/sq mi)Zona waktuUTC+9 (Waktu Standar Korea)Situs webJung-gu official website Distrik Jung (Jung-gu), yang bermakna Distrik Pusat, adalah satu dari 25 distrik (gu) di Seoul, Korea Selatan. Distrik ini terletak di sisi utara ...
Love Is StrangeSingel oleh Mickey & SylviaSisi-BI'm Going HomeDirilisNovember 1956 (1956-11)[1]DirekamOctober 17, 1956[2]GenreRock and roll, rhythm and bluesDurasi2:52LabelGroovePenciptaEthel Smith[2]ProduserBob Rolontz[2]Kronologi singel Mickey & Sylvia No Good Lover (1956) Love Is Strange (1956) There Oughta Be a Law (1957) AudioLove Is Strange di YouTube Love Is Strange adalah hit crossover milik duet R&B asal Amerika yaitu Mickey & Sylv...
Hideyo Amamoto天本 英世Hideyo Amamoto. diambil pada tahun 1954.Nama lainEisei AmamotoTahun aktif1954-2003 Hideyo Amamoto (天本 英世code: ja is deprecated , Amamoto Hideyo, 2 Januari 1926 – 23 Maret 2003) atau nama kecilnya adalah Eisei Amamoto, merupakan seorang pemeran berkebangsaan Jepang. Berkarier di dunia film sejak tahun 1954 dan sampai tahun 2003, dan dia menjadi yang terkenal saat bermain di film-film terkenal seperti Doktor Grimreaper dalam serial Ka...
El estilo de esta traducción aún no ha sido revisado por terceros. Si eres hispanohablante nativo y no has participado en esta traducción puedes colaborar revisando y adaptando el estilo de esta u otras traducciones ya acabadas. Disparador de crisis EEG que muestra descargas generalizadas de espiga y onda en 3HzeMedicine neuro/694[editar datos en Wikidata] Un disparador de crisis es un factor que puede causar una convulsión en una persona, ya sea esta una crisis epiléptica o no...
Ferry that sank off Zanzibar in 2011 Spice Islander I in Stone Town 2010 History Name Marianna (1967–1988) Apostolos P (1988–2007) Spice Islander I (2007–2011) Owner Thelogos P Naftiliaki (−1988) Apostolos Shipping (1988–1999) Saronikos Ferries (1999–2005) Hellenic Seaways (2005–2007) Makame Hasnuu (2007–2011) Port of registry Piraeus, Greece (1967–2007) San Lorenzo, Honduras (2007– ) Zanzibar, Tanzania ( –2011) Way number456 Launched1967 Completed1967 Out of service10 S...
Spanish singer (born 1975) For his self-titled album, see Enrique Iglesias (album). In this Spanish name, the first or paternal surname is Iglesias and the second or maternal family name is Preysler. Enrique IglesiasIglesias at the Euphoria World Tour in 2011BornEnrique Miguel Iglesias Preysler (1975-05-08) 8 May 1975 (age 48)Madrid, SpainEducationGulliver Preparatory SchoolUniversity of MiamiOccupationsSingersongwriterrecord producercomposeractorYears active1995–presentPa...
Award Grammy Award for Best Audio Book, Narration & Storytelling RecordingAwarded forquality spoken word albumsCountryUnited StatesPresented byNational Academy of Recording Arts and SciencesFirst awarded1959Currently held byViola Davis, Finding Me (2023)Websitegrammy.com The Grammy Award for Best Spoken Word Album has been awarded since 1959. The award has had several minor name changes: In 1959 the award was known as Best Performance, Documentary or Spoken Word From 1960 to 1961 it was a...
United States historic placeBear ButteU.S. National Register of Historic PlacesU.S. National Historic Landmark LocationMeade County, South DakotaNearest citySturgis, South DakotaCoordinates44°28′33″N 103°25′37″W / 44.47583°N 103.42694°W / 44.47583; -103.42694NRHP reference No.73001746Significant datesAdded to NRHPJune 19, 1973Designated NHLDecember 21, 1981[1] Southwestern South Dakota Sculptures Mount Rushmore (National memoria...
1976 Australian filmThe Singer and the DancerDirected byGillian ArmstrongWritten byJohn PlefferBased onshort story 'Old Mrs Bilson' by Alan MarshallProduced byGillian ArmstrongStarringRuth CracknellCinematographyRussell BoydEdited byNicholas BeaumanMusic byRobert MurphyDistributed byColumbia PicturesRelease dates June 1976 (1976-06) (premiere) April 1977 (1977-04) Running time52 minutesCountryAustraliaLanguageEnglishBudgetAU$27,000[1] The Singer and the Dancer ...
Karl DönitzDonitz saat menjadi Laksamana Agung pada 1943Presiden Jerman Ke-4Masa jabatan30 April 1945 – 23 Mei 1945KanselirJoseph GoebbelsLutz Graf Schwerin von KrosigkPendahuluAdolf Hitler (Sebagai Führer)PenggantiTheodor Heuss (Jerman Barat) dan Wilhelm Pieck (Jerman Timur) Informasi pribadiLahir16 September 1891,Grünau dekat BerlinMeninggal24 Desember 1980,Aumühle dekat HamburgKebangsaanJermaPartai politikPartai Nazi[1]Suami/istriIngeborg Weber (m....
Brazilian model In this Portuguese name, the first or maternal family name is Agreste and the second or paternal family name is Braga. Daniela BragaBraga in 2015BornDaniela Agreste Braga (1992-01-23) 23 January 1992 (age 31)São Paulo, Brazil[2]OccupationModelYears active2011–present[3]Spouse= Adam FreedeModeling informationHeight1.80 m (5 ft 11 in)Hair colorBrownEye colorHazelAgency Next Management (Paris, Milan) Elite Model Management (New York...