Правильный апейрогон разбивает плоскость на две полуплоскости, образуя апейрогональный диэдр[англ.] {∞,2}. Внутренняя часть апейрогона может быть определена путём указания направления сторон.
Правильными апейрогонами можно считать прямые, состоящие из рёбер четырёх однородных мозаик и пяти мозаик, двойственных однородным, на евклидовой плоскости.
Изогональный апейрогон имеет вершины одного типа и чередующиеся стороны двух типов (длин).
Квазиправильный апейрогон — изогональный апейрогон с равными длинами сторон.
Изотоксальный апейрогон является двойственным по отношению к изогональному. Он имеет один тип рёбер и два типа вершин и геометрически идентичен правильному апейрогону, что можно показать чередующейся раскраской вершин в два цвета.
Правильные апейрогоны на плоскости Лобачевского имеют кривизну, также как и многоугольники с конечным числом сторон.
Вокруг апейрогона на плоскости Лобачевского можно описать орицикл или эквидистанту (гиперцикл), аналогично тому, как вокруг многоугольника с конечным числом сторон может быть описана окружность.
Coxeter, H. S. M. and Moser, W. O. J. Generators and Relations for Discrete Groups. — New York: Springer-Verlag, 1980. — ISBN 0-387-09212-9. (1st ed, 1957) 5.2 The Petrie polygon {p, q}.