Gravidade quântica canônica

Em física, a gravidade quântica canônica, gravidade canônica ou relatividade quântica canônica é uma tentativa de quantizar a formulacão canônica da relatividade geral. É uma formulação hamiltoniana da Teoria Geral da Relatividade de Einstein.

A teoria básica foi descrita por Bryce DeWitt em um articulo formal em 1967[1], baseando-se em um trabalho prévio de Peter G. Bergmann,[2] usando as chamadas técnicas de quantização canônica para sistemas hamiltonianos limitados inventadas por P. A. M. Dirac.[3] O enfoque de Dirac permite a quantização de sistemas que incluem simetrias de gauge usando técnicas hamiltonianas em uma eleição de gauge fixa. Novos enfoques, baseados em parte no trabalho de DeWitt e Dirac, incluem o estado de Hartle-Hawking, o cálculo de Regge, a equação de Wheeler-DeWitt e a gravidade quântica em loop.

A quantização se baseia na decomposição do tensor métrico tal como segue,

onde a soma dos índices repetidos é implícita, o índice 0 indica tempo , os índices gregos tomam todos los valores 0,...,3 e os índices latinos tomam os valores especiais 1,...3. A função se chama a função lapso e as funções se chamam funções shift. Os índices espaciais aumentam e decrescem usando a métrica espacial e sua inversa : e , , onde é o delta de Kronecker. Com esta decomposição, a lagrangiana de Einstein-Hilbert se converte em derivadas totais,

onde é a curvatura escalar espacial calculada com respeito à métrica de Riemann e é a curvatura extrínseca,

onde dá uma diferenciação covariante com respeito à métrica . DeWitt descreve que a lagrangiana "tem a forma clássica de 'energia cinética menos energia potencial', com a curvatura extrínseca desempenhando o papel da energia cinética e o oposto da curvatura intrínseca, o da energia potencial." Ainda que esta forma da lagrangiana é manifestamente invariante se redefinem-se a coordenadas espaciais, fazendo opaca a covariância geral.

Como as funções lapso e shift podem ser eliminadas por uma transformação de gauge, não representam graus físicos de liberdade. Isto se indica movendo-nos ao formalismo hamiltoniano pelo fato de seus momentos conjugados, respectivamente, e , desaparecem de forma idêntica (on shell e off shell). Isto é o que Dirac chama limitações primárias. Uma eleição popular de gauge chamada gauge síncrono, é e , ainda que, em princípio, pode ser eleita qualquer função das coordenadas. Neste caso, o hamiltoniano toma a forma

onde

e é o momento de conjugar a . As equações de Einstein podem ser recuperadas tomando colchetes de Poisson com o hamiltoniano. Limitações on-shell adicionais, chamadas limitações secundárias por Dirac, surgem da consistência da álgebra de Poisson. São e . Esta é a teoria que está sendo quantizada em aproximações à gravidade quântica canônica.

Referências

  1. B. S. DeWitt (1967). "Quantum theory of gravity. I. The canonical theory". Phys. Rev. 160: 1113–48. doi:10.1103/PhysRev.160.1113
  2. ver, p.ex. P. G. Bergmann; Hamilton-Jacobi and Schrödinger Theory in Theories with First-Class Hamiltonian Constraints; Helv. Phys. Acta Suppl. 4, 79 (1956) e referências.
  3. P. A. M. Dirac (1950). "Generalized Hamiltonian dynamics". Can. J. Math. 2: 129–48. P. A. M. Dirac (1964). Lectures on quantum mechanics. New York: Yeshiva University.
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (فبراير 2021) في في في في في في المطور تيري كافاناه الناشر نيكاليس الموزع ستيم، جوجل بلاي، غوغ دوت كوم، نينتندو إي شوب، بلاي ستيشن ستور، آب ستور المصمم تيري كافاناه بينيت ف

 

Participantes à une zombie walk avec des maquillages gore, pendant le festival de Cannes 2013. Le gore est un sous-genre cinématographique du cinéma d'horreur, caractérisé par des scènes extrêmement sanglantes et très explicites dont l'objectif est d'inspirer au spectateur le dégoût, la peur, le divertissement ou le rire. Origine du terme L’orthographe du mot gore telle que nous la connaissons actuellement remonterait au XIIe siècle. Diverses étymologies du mot sont propos...

 

Ten artykuł dotyczy 1 Pułku Strzelców Konnych z okresu II RP. Zobacz też: 1 Pułk Strzelców Konnych – stronę ujednoznaczniającą. 1 Pułk Strzelców Konnych odznaka pułkowa 1 Pułku Strzelców Konnych - wzór 2 Historia Państwo  Polska Sformowanie 1919 Rozformowanie 1939 Patron Cesarz Napoleon Tradycje Święto 9 maja[a] Nadanie sztandaru 4 maja 1924 Dowódcy Pierwszy płk Tadeusz Sulimirski Ostatni rtm. Stanisław Łukaszewicz Działania zbrojne kampania wrześniowabitwa pod ...

PT Pengembangan Pariwisata IndonesiaNama dagangIndonesia Tourism Development CorporationSebelumnyaPT Pengembangan Pariwisata Bali (Persero) (1973 - 2014)JenisPerseroan terbatasIndustriPariwisataDidirikan12 November 1973KantorpusatBadung, Bali, IndonesiaWilayah operasiIndonesiaTokohkunciAbdulbar M Mansoer (Direktur Utama)ProdukNusa Dua dan MandalikaPendapatan Rp 241,7 miliar (2020)Laba operasi Rp 23,8 miliar (2020)Laba bersih Rp 22,96 miliar (2020)Total aset Rp 2,98 triliun...

 

1914 film For the 1925 film directed by Charles Reisner, see The Man on the Box (1925 film). The Man on the BoxNewspaper advertisement.Directed byOscar ApfelCecil B. DeMille (uncredited)Based onThe Man on the Boxby Harold MacGrathStarringHorace B. CarpenterRelease date July 13, 1914 (1914-07-13) CountryUnited StatesLanguageSilent with English intertitles The Man on the Box is a 1914 American silent comedy-drama film directed by Oscar Apfel and co-directed by Cecil B. DeMille. I...

 

Coupe du monde de combiné nordique 2015-2016 Généralités Sport Combiné nordique Organisateur(s) FIS Éditions 33e édition Date du 28 novembre 2015 au 6 mars 2016 Épreuves 23 Site web officiel fis-ski.com/nordic-combined Palmarès Vainqueur Eric Frenzel Deuxième Akito Watabe Troisième Fabian Riessle Navigation 2014–2015 2016–2017 modifier La coupe du monde de combiné nordique 2015-2016 est la 33e édition de la coupe du monde de combiné nordique, compétition de combin...

SMA Negeri 1 SungailiatInformasiDidirikan22 Februari 1978Jurusan atau peminatanIPA dan IPSRentang kelasX, XI IPA, XI IPS, XII IPA, XII IPSKurikulumKurikulum 2013AlamatLokasiJl. Pemuda, Sungailiat, Kepulauan Bangka BelitungMoto SMA Negeri 1 Sungailiat SMA Negeri (SMAN) 1 Sungailiat, merupakan salah satu Sekolah Menengah Atas Negeri yang ada di Provinsi Kepulauan Bangka Belitung, Indonesia. Sama dengan SMA pada umumnya di Indonesia masa pendidikan sekolah di SMAN 1 Sungaliat ditempuh dalam wakt...

 

Manila Jai Alai BuildingGeneral informationArchitectural styleStreamline ModerneLocationTaft Avenue, Ermita, ManilaCoordinates14°35′5″N 120°59′3″E / 14.58472°N 120.98417°E / 14.58472; 120.98417Construction started1939Completed1940DemolishedJuly 15, 2000Technical detailsFloor countfourDesign and constructionArchitect(s)Welton Becket The Manila Jai Alai Building was a building designed by American architects Welton Becket and Walter Wurdeman that functioned a...

 

Postcard artwork of the Star and Garter Hotel in the 1890s The Star and Garter Hotel in Richmond was a hotel located in the London countryside (later suburbs) on Richmond Hill overlooking the Thames Valley, on the site later occupied by the Royal Star and Garter Home, Richmond. The first establishment on the site, an inn built in 1738, was relatively small. This was followed by several other buildings of increasing size and varied design as the site changed from family ownership to being run ...

4th episode of the 1st season of Bob's Burgers Sexy Dance FightingBob's Burgers episodeBob has to cover for Tina when she takes a martial arts class.Episode no.Season 1Episode 4Directed byAnthony ChunWritten bySteven DavisKelvin YuProduction code1ASA06Original air dateFebruary 13, 2011 (2011-02-13)Guest appearances Jon Glaser as Jairo Andy Kindler as Mort Larry Murphy as Teddy Episode chronology ← PreviousSacred Cow Next →Hamburger Dinner Theater Bob's Burger...

 

American brand by Nike For the defunct airline, see Air Jordan (airline). Air JordanThe silhouette of Michael Jordan served as inspiration to create the Jumpman logo.Product typeBasketball shoes, clothingOwnerNikeCountryUnited StatesIntroducedNovember 17, 1984; 39 years ago (1984-11-17)[a]MarketsWorldwideWebsitenike.com/jordan This article is part of a series aboutMichael Jordan Career Career achievements The Shot Game 6 of the 1998 NBA Finals 1982 NCAA Championship ...

 

Men's C-1 200 metres at the 2018 ICF Canoe SprintWorld ChampionshipsVenueCentro de Alto Rendimentode Montemor-o-VelhoLocationMontemor-o-Velho, PortugalDates25–26 AugustCompetitors36 from 18 nationsWinning time39.810Medalists  Artsem Kozyr   Belarus Ivan Shtyl   Russia Henrikas Žustautas   Lithuania← 20172019 → 2018 ICF Canoe SprintWorld ChampionshipsCanadian eventsC-1 200mmenwomenC-1 500mmenwomenC-1...

Railway station in Munakata, Fukuoka Prefecture, Japan JA  14  Akama Station赤間駅 Akama Station in 2016General informationLocationMunakata, FukuokaJapanCoordinates33°48′28″N 130°34′09″E / 33.8077°N 130.5692°E / 33.8077; 130.5692Operated by JR KyushuLine(s)■ Kagoshima Main Line,Distance46.5 km from MojikōPlatforms2 island platformsTracks4ConstructionStructure typeAt gradeOther informationWebsiteOfficial websiteHistoryOpened28 Septe...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Lloyd Kahn – new...

 

Historic district in Alabama, United States United States historic placeSeth Lore and Irwinton Historic DistrictU.S. National Register of Historic PlacesU.S. Historic district Show map of AlabamaShow map of the United StatesLocationEufaula, AlabamaCoordinates31°53′34″N 85°8′39″W / 31.89278°N 85.14417°W / 31.89278; -85.14417Architectural styleClassical Revival, Bungalow/Craftsman, Late Victorian, Italianate, Gothic RevivalNRHP reference No.860...

← 1900 •  • 1905 → Elecciones generales de Cuba de 1901Presidente de la República24 escaños del Senado63 escaños de la Cámara de Representantes Fecha 31 de diciembre de 1901 Tipo General Período 1902-1906 Demografía electoral Hab. registrados 335,616 Votantes 213,116 Participación    63.5 % Resultados Tomás Estrada Palma – Independiente Votos 158,116      74.20 % Bartolomé Masó Márquez – ...

 

Arturo Chacón Información personalNacimiento 20 de agosto de 1977 (46 años)Ciudad Obregón, Sonora,  MéxicoNacionalidad MexicanaEducaciónEducado en Universidad de BostonBoston University College of Fine Arts Información profesionalOcupación Cantante de ópera y artista escénico Instrumento Voz Tipo de voz Tenor Sitio web www.arturochaconcruz.com [editar datos en Wikidata] Arturo Chacón (20 de agosto de 1977, Ciudad Obregón. México) es un cantante operístico mexicano...

 

(left to right) Nick Simper (top), Ritchie Blackmore (bottom), Ian Paice, Jon Lord and Rod Evans(left to right) Jon Lord, Roger Glover, Ian Gillan, Ritchie Blackmore and Ian Paice(left to right) Glenn Hughes, David Coverdale (top), Tommy Bolin (bottom), Ian Paice and Jon Lord(left to right) Ian Paice, Roger Glover, Steve Morse, Don Airey and Ian Gillan(left to right) Roger Glover, Ian Paice, Ian Gillan, Don Airey and Simon McBrideDeep Purple, from top to bottom, in 1968 (Mark I), 1970 (Mark ...

John Archer-HoublonMember of Parliament for EssexIn office1810–1820Serving with Eliab Harvey, Charles WesternPreceded byJohn BullockEliab HarveySucceeded bySir Eliab HarveyCharles Western Personal detailsBornJohn Houblon(1773-12-01)1 December 1773Died31 May 1831(1831-05-31) (aged 57)RelationsThomas Archer Houblon (grandson)Jacob Houblon (grandfather)Children13Parent(s)Jacob HoublonSusannah ArcherResidenceWelford ParkEducationFelsted SchoolCharterhouse SchoolAlma materEmmanuel ...

 

Paghimo ni bot Lsjbot. Alang sa ubang mga dapit sa mao gihapon nga ngalan, tan-awa ang Lone Pine Creek. 48°59′01″N 119°33′36″W / 48.98349°N 119.56007°W / 48.98349; -119.56007 Lone Pine Creek Suba Nasod  Tinipong Bansa Estado Washington Kondado Okanogan County Gitas-on 335 m (1,099 ft) Tiganos 48°59′01″N 119°33′36″W / 48.98349°N 119.56007°W / 48.98349; -119.56007 Timezone PST (UTC-8)  - summer (DST) PDT&...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!