Notação bra-ket

Mecânica quântica
Princípio da Incerteza
Introdução à mecânica quântica

Formulação matemática

Introdução
Mecânica clássica
Antiga teoria quântica
Interferência · Notação Bra-ket
Hamiltoniano

Notação bra-ket é uma notação padrão para descrever estados quânticos na teoria da mecânica quântica. Ela também é utilizada para denotar vetores e funcional linear abstratos na matemática pura. É assim chamada por ser o produto interno de dois estados denotados por um bracket, consistindo de uma parte esquerda, denominada bra, e uma parte direita, denominada ket. A notação foi criada por Paul Dirac, e por isso é também conhecida como notação de Dirac.[1][2][3]

Bras e kets

Uso mais comum: mecânica quântica

As componentes reais do vetor 3D e a projeção da base; semelhanças entre cálculo notação vetorial e notação de Dirac.

Em mecânica quântica, o estado físico de um sistema é identificado como um raio unitário em um espaço de Hilbert separável complexo, ou, equivalentemente, por um ponto no espaço de Hilbert projetado de um sistema. Cada vetor no raio é chamado um "ket" e escrito como que deve ser lido como "psi ket".[4]

O ket pode ser visualizado como um vetor coluna e (dada uma base para o espaço de Hilbert) escrito por extenso em componentes,

quando o espaço de Hilbert considerado possuir finitas dimensões. Em espaços de dimensão infinita, há infinitas componentes e o ket deve ser escrito em notação de função, precedido por um bra (veja abaixo). Por exemplo,

Todo ket possui um bra dual, escrito como Por exemplo, o bra correspondente ao acima deve ser um vetor linha, isto é,

Isto é um funcional linear contínuo de para os números complexos definido por:

para todo ket

onde denota o produto interno definido sobre o espaço de Hilbert. Aqui, uma vantagem da notação bra-ket torna-se clara: quando removemos os parênteses (como é comum em funcionais lineares) e fundimos junto com as barra, obtemos que é a notação comum para produto interno no espaço de Hilbert. Esta combinação de um bra com um ket para formar um número complexo é chamada bra-ket ou bracket.

Em mecânica quântica a expressão (matematicamente o coeficiente para a projeção de em ) é tipicamente interpretada como a amplitude de probabilidade para o estado para o colapso no estado [5][6][7][8]

Ver também

Referências

  1. PAM Dirac (1939). "A new notation for quantum mechanics". Mathematical Proceedings of the Cambridge Philosophical Society 35 (3): 416–418. doi:10.1017/S0305004100021162. ISSN 0305-0041 (em inglês)
  2. Siqueira-Batista, Rodrigo; Vicari, Mathias Viana; Helayël-Neto, José Abdalla (27 de maio de 2022). «David Bohm e a Mecânica Quântica: o Todo e o Indiviso». Revista Brasileira de Ensino de Física. ISSN 1806-1117. doi:10.1590/1806-9126-RBEF-2022-0102. Consultado em 29 de setembro de 2022 
  3. Cajori, Florian (1929). A History Of Mathematical Notations Volume II. Open Court Publishing. p. 134. ISBN 978-0-486-67766-8. (em inglês)
  4. Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-071-45546-9 (em inglês)
  5. Carfì, David (abril de 2003). «Dirac-orthogonality in the space of tempered distributions». Journal of Computational and Applied Mathematics. 153 (1–2): 99–107. Bibcode:2003JCoAM.153...99C. doi:10.1016/S0377-0427(02)00634-9 
  6. Carfì, David (abril de 2003). «Some properties of a new product in the space of tempered distributions». Journal of Computational and Applied Mathematics. 153 (1–2): 109–118. Bibcode:2003JCoAM.153..109C. doi:10.1016/S0377-0427(02)00635-0 
  7. Carfì, David (2007). «TOPOLOGICAL CHARACTERIZATIONS OF S-LINEARITY». AAPP-PHYSICAL, MATHEMATICAL AND NATURAL SCIENCES. 85 (2): 1–16. doi:10.1478/C1A0702005 
  8. Carfì, David (2005). «S-DIAGONALIZABLE OPERATORS IN QUANTUM MECHANICS». Glasnik Matematicki. 40 (2): 261–301. doi:10.3336/gm.40.2.08 

Bibliografia

  1. J. J. Sakurai, Modern Quantum Mechanics (Revised Edition) , Addison Wesley; 1993 ISBN 0-201-53929-2 (em inglês)
Ícone de esboço Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.

Read other articles:

Briefmarkenblocks 1986 XI. Parteitag der SozialistischenEinheitspartei Deutschlands (SED)Michel Blocknummer 83 750 Jahre Berlin (I)Michel Blocknummer 84 Leipziger HerbstmesseMichel Blocknummer 85 200. Geburtstag vonCarl Maria von WeberMichel Blocknummer 86 Der Briefmarken-Jahrgang 1986 der Deutschen Post der Deutschen Demokratischen Republik umfasste 47 einzelne Sondermarken, vier Briefmarkenblocks mit gesamt fünf Sondermarken und drei Kleinbogen mit zusammen 14 Sondermarken. 16 Briefma...

 

 

Film Titel Das Rätsel des silbernen Halbmonds Originaltitel Sette orchidee macchiate di rosso Produktionsland Italien, Deutschland Originalsprache Italienisch Erscheinungsjahr 1972 Länge 92 Minuten Altersfreigabe FSK 16 Stab Regie Umberto Lenzi Drehbuch Paul Hengge, Roberto Gianviti, Umberto Lenzi (Geschichte) Produktion Lamberto Palmieri, Horst Wendlandt (ungenannt) Musik Riz Ortolani Kamera Angelo Lotti Schnitt Eugenio Alabiso, Clarissa Ambach Besetzung Antonio Sabato: Mario Gerosan ...

 

 

The following is a list of Clarivate Citation candidates considered likely to win the Nobel Prize in Physiology or Medicine.[1] Since 2023, thirteen out of 95 citation laureates starting in 2008 have eventually been awarded a Nobel Prize: Elizabeth Blackburn, Carol W. Greider and Jack W. Szostak (2009), Ralph M. Steinman (posthumously), Bruce Beutler and Jules A. Hoffmann (2011), Shinya Yamanaka (2012), James Rothman and Randy Schekman (2013), Yoshinori Ohsumi (2016), James P. Allison...

إريك الأحمر (بالإسكندنافية القديمة: Eiríkr rauði Þorvaldsson)‏  صورة مرسومة لأريك الأحمر حوالي سنة 1688 معلومات شخصية الميلاد 4 مايو 950(950-05-04)النرويج الوفاة 1003 مواطنة النرويج  لون الشعر شعر أصهب[1]  الأولاد ليف إريكسون  الحياة العملية المهنة مستكشف،  ومستوطن  اللغة ا...

 

 

ون بيس  قائمة حلقات ون بيس  ون بيس (الموسم 13)   لمعانٍ أخرى، طالع ون بيس (توضيح). ون بيس (الموسم 13) غلاف أول دي في دي للموسم 13 بواسطة توي أنيميشن. المسلسل ون بيس البلد  اليابان العرض الشبكة تلفزيون فوجي العرض الأول 18 أكتوبر 2009 العرض الأخير 11 يوليو 2010 عدد الحلقات 35 تسل...

 

 

Siege of the English Civil War (1644) Not to be confused with the earlier Siege of York (Caer Ebrauc) appearing in Arthurian legend. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Siege of York – news · newspapers · books · scholar · JSTOR (May 2020) (Learn how and when to remove this template message) 53°57

Юліан Дракслер Юліан Дракслер Особисті дані Народження 20 вересня 1993(1993-09-20) (30 років)   Гладбек, Німеччина Зріст 187 см Вага 72 кг Громадянство  Німеччина Позиція півзахисник Інформація про клуб Поточний клуб «Парі Сен-Жермен» Номер 34 Юнацькі клуби 1998–20002000–20012001–2011 ...

 

 

Ethiopian football club Football clubEthiopian CoffeeFull nameEthiopian Coffee Sport ClubNickname(s)ንጋት ኮከብ (Morning Star)ቡና ገበያ (Coffee Market)Short nameBunaFounded1976 (1968 E.C.)GroundAddis Ababa StadiumCapacity35,000OwnerSupporter ownedChairman Meto Aleka Fekade Mamo(Chento)ManagerYosef TesfayeLeagueEthiopian Premier League2022–23Ethiopian Premier League, 4th of 16 Home colours Away colours Third colours Current seasonEthiopian Coffee Sport Club (Amharic: የ...

 

 

Building in Rio de Janeiro, BrazilTiradentes PalacePalácio TiradentesGeneral informationStatusSeat of the Legislative Assembly of Rio de JaneiroArchitectural styleEclecticismLocationRio de JaneiroAddressRua Primeiro de Março s/nCountryBrazilCoordinates22°54′13.932317″S 43°10′25.957203″W / 22.90387008806°S 43.17387700083°W / -22.90387008806; -43.17387700083Construction started1922Inaugurated6 May 1926OwnerRio de Janeiro state governmentDesign and construct...

High school in Buffalo, New York, United States This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: City Honors School – news · newspapers · books · scholar · JSTOR (November 2021) (Learn how and when to remove this template message) City Honors School at Fosdick-Masten ParkThe front of City Honors SchoolAddress...

 

 

British TV series or programme StrangeStrange title cardGenreSupernatural dramaHorrorThrillerCreated byAndrew MarshallStarringRichard CoyleSamantha WomackIan RichardsonWilliam TomlinAndrew-Lee PottsTimmy LangComposerDan JonesCountry of originUnited KingdomOriginal languageEnglishNo. of seasons1No. of episodes7ProductionExecutive producerAndrew MarshallProducerMarcus MortimerRunning time60 minsProduction companyBig Bear ProductionsOriginal releaseNetworkBBC OneRelease9 March 2002 (20...

 

 

The list of shipwrecks in March 1862 includes ships sunk, foundered, grounded, or otherwise lost during March 1862. March 1862 MonTueWedThuFriSatSun 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Unknown date References 1 March List of shipwrecks: 1 March 1862 Ship Country Description Alice  United Kingdom The brigantine was wrecked at Halifax, Nova Scotia, British North America.[1] David Lyon  United Kingdom The ship was wrecked at Havan...

2005 EP by TriosphereDeadly DecadenceEP by TriosphereReleased2005RecordedStudio Godt Selskap, TrondheimGenreHeavy metal, power metal, progressive metalLength14:28[1]ProducerRune StavnesliTriosphere chronology Deadly Decadence(2005) Onwards(2006) Deadly Decadence is an EP and the debut recording by the Norwegian heavy metal band Triosphere. It was released in 2005 one year after the band's creation, and was followed up by their first full-length album, Onwards (which also inclu...

 

 

Cultivar of Cucurbita moschata. Cucurbita moschata 'Tromboncino'Tromboncino summer squash, with blossoms Rampicante is beige when matureSpeciesCucurbita moschataCultivarTromboncinoOriginLiguria, Italy Tromboncino (Italian: [trombonˈtʃiːno]), also known as zucchetta (Italian: [dzukˈketta]), is a type of squash most often used as a summer squash. While nearly all summer squash are cultivars of Cucurbita pepo,[1] tromboncino is a cultivar of Cucurbita moschata.[1&...

 

 

Annual award ceremony British Muslim AwardsAwarded forSuccess and achievements of British MuslimsSponsored byAl Rayan BankLocationEnglandCountryUnited KingdomPresented byOceanic ConsultingFirst awarded2013Websitehttp://www.thediversityawards.info/britishmuslim/  The British Muslim Awards are an annual award ceremony that honours the success and achievements of British Muslim individuals, groups and businesses. It was established in 2013. Overview The British Muslim Awards was founded by ...

Untuk kegunaan lain, lihat Saturnus (disambiguasi). SaturnDewa Capitol, kesejahteraan, agribudaya, kebebasan, dan waktu16th-century engraving of SaturnusKuilKuil SaturnusFestivalSaturnaliaInformasi pribadiOpsAnakJupiter, Neptunus, Pluto, Juno, Ceres dan VestaOrang tuaCaelus dan TerraSaudaraJanus, OpsYunaniCronus Saturnus adalah seorang dewa dalam agama Romawi kuno, dan sebuah karakter dalam mitos. Saturnus adalah sebuah figur kompleks karena keterikatan gandanya dan sejarah panjangnya. Ia ada...

 

 

Island in Hong Kong For similar terms, see Ma Wan (painter) and Ma Wan (Tung Chung). This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Ma Wan – news · newspapers · books · scholar · JSTOR (September 2007) (Learn how and when to remove this template message) Ma Wan馬灣General view of Ma Wan from the northLoca...

 

 

American heiress and socialite (1875–1961) Anna GouldDuchess of Talleyrand and DinoDuchess of Sagancirca 1900Born(1875-06-05)June 5, 1875DiedNovember 30, 1961(1961-11-30) (aged 86)Spouse(s) Boni de Castellane ​ ​(m. 1895; div. 1906)​ Hélie de Talleyrand-Périgord ​ ​(m. 1908; died 1937)​ ParentsJay GouldHelen Day Miller Anna Gould (June 5, 1875 – November 30, 1961) was an American soc...

Indian chess player This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (October 2019) Malika HandaBorn (1995-03-20) March 20, 1995 (age 28)Jalandhar, Punjab, IndiaPeak rating1408 (April 2013) Malika Handa (born 20 March 1995)[1] is a deaf Indian professional chess player and the first Indian woman to win a gold medal in the International Deaf Chess Championship.[2&...

 

 

58th Binibining Pilipinas pageant Binibining Pilipinas 2022Nicole Borromeo, Binibining Pilipinas International 2022DateJuly 31, 2022PresentersCatriona GrayNicole CordovesEdward BarberSamantha BernardoEntertainmentSB19Maymay EntrataVenueSmart Araneta Coliseum, Quezon City, Metro Manila, PhilippinesBroadcasterA2ZTV5Entrants40Placements12WithdrawalsAngeles, PampangaPampangaPangasinanWinnerNicole BorromeoCebuCongenialityEiffel RosalitaCatanduanesBest National CostumeGraciella LehmannOriental Mind...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!