一般に曲線は実数直線内の区間I から位相空間X への連続写像γ: I → X を通じて定義される。写像 γ 自身を曲線と呼ぶか、γ の像を曲線と呼ぶかは文脈による。例えば位相空間論において写像自身を曲線と呼ぶのは、単に連続というだけの写像の像を曲線と呼ぼうとすれば、およそ一般的に言う意味での曲線とは思えないものまで曲線と呼ぶことになってしまうためである。他方で、可微分函数(あるいは少なくとも区分的に微分可能な函数)の定める曲線を対象とするならば、曲線と呼ぶのはふつう像のほうである。
曲線 γ が単純またはジョルダン弧であるとは、γ が単射(すなわち x, y ∈ I が γ(x) = γ(y) を満たすならば必ず x = y)となることを言う。ただし、I が有界閉区間 [a, b] のときには、γ(a) = γ(b) となることは許す(このように約束すれば、単純閉曲線について述べることができる)。日常語で言えば、「自分自身と交叉することがなく、また途切れたりもしていない」曲線が単純曲線である[7]。
(I の端点以外の)適当な x ≠ y で γ(x) = γ(y) となるならば、γ(x) はこの曲線の多重点(少なくとも二重点)と呼ばれる曲線の特異点である。
平面曲線は X がユークリッド平面、場合によっては射影平面であるような場合の曲線を言う。空間曲線は X が三次元の空間(ふつうはユークリッド空間)の場合を言い、非平面曲線 (skew curve) はどのような平面上にも載っていない空間直線を言う。これら平面・空間・非平面曲線の区別は実代数曲線(英語版)にも適用できるが、代数曲線がここでいう曲線の定義を満たさないことは注意すべきである(たとえば実代数曲線は不連結になりうる)。
I は実数直線内の区間とする。X が可微分多様体であるとき、X 内の可微分曲線の概念を考えることができる。厳密さをさておけば可微分曲線とは局所的に単射可微分写像γ: I → X で定義される曲線である。より厳密には、可微分曲線は X の部分集合 C であって、C の各点に近傍 U が存在して、C ∪ U が実数直線内の区間に微分同相となる。すなわち、可微分曲線は一次元の可微分多様体である。この概念は、数学における曲線の使用の大半の部分をカバーするのに十分一般なものである。局所的に見れば X はユークリッド空間Rn ととることができる。他方、より一般であることは有用で、例えば、可微分曲線の概念を用いて X の接ベクトルを定義することができる。
同様に X が滑らかな多様体であるとき X 内の滑らかな曲線あるいは C∞-級曲線を、滑らかな写像γ: I → X によって定義することができる。あるいはより細かく、X が Ck-級可微分多様体(各チャートが k 回連続的微分可能)ならば、X 内の Ck-級可微分曲線あるいは短く Ck-級曲線は、写像 γ が k 回連続的微分可能とだけ仮定することで定義できる。またより強く、X が解析多様体(各チャートが無限回微分可能かつ冪級数展開可能)で、γ が解析写像(Cω-級)ならば、解析曲線(Cω-級曲線)と呼ぶ。
可微分曲線が非特異 (regular) とは、その微分が至る所消えないときに言う(つまり、非特異曲線は動点がその曲線上で速度が弱まり停止したり後戻りしたりしない)。二つの Ck-級可微分曲線 γ1; I → X, γ2: J → X が同値であるとは、Ck-級全単射p: J → I が存在して、逆写像p−1 も Ck-級、かつ任意の t において γ2(t) = γ1(p(t)) を満たすときに言う。写像 γ2 は γ1 のパラメータの取り換え (reparametrisation) であると言う。パラメータの取り換えであるという関係は X 上の Ck-級可微分曲線全体の成す集合上の同値関係を与え、その各同値類は Ck-級の弧 (Ckarc) と呼ばれる。
代数曲線は代数幾何学で扱われる曲線である。平面代数曲線は、各座標 x, y が適当な体 F 上の二変数多項式 f を用いて f(x, y) = 0 を満たすような点全体の成す軌跡を言う。通例、代数幾何学においては F に座標をとる点だけを見るのではなく、適当な代数閉体K に座標をとる点すべてを考える。曲線 C が F-係数多項式 f によって定義されているとき、曲線 C は F 上定義されていると言う。曲線 C の点は、その各座標がすべて一つの体 G に属しているとき、G 上の有理点あるいは短く G-有理点と呼ぶ。C の G-有理点全体の成す集合は C(G) と書かれる。G が有理数全体の成す体であるときは、単に「有理点」と呼ぶ。例えば、フェルマーの最終定理を「n > 2 に対して、次数 2 のフェルマー曲線(英語版)の任意の有理点は必ず何れかの座標が零に等しい」と言い換えることができる。
平面代数曲線は射影平面内の曲線として計算することもできる。曲線が全次数 d の多項式 f で定義されているとき、wd⋅f(u/w, v/w) は斉次次数 d の斉次多項式g(u, v, w) に簡略化できる。g(u, v, w) = 0 を満たす u, v, w の値はもとの曲線を完備化した射影曲線上の曲線上の点の斉次座標を与えており、特にもともとの曲線上の点は w が非零であるような点として表される。例えばフェルマー曲線(英語版)un + vn = wn はそのアフィン形が xn + yn = 1 で与えられる。この斉次化の過程はより高次元の空間内の曲線に対しても同様に定義できる。