Numero ettagonale

I primi cinque numeri ettagonali

Un numero ettagonale è un numero poligonale che rappresenta un ettagono di lati. L'-esimo numero ettagonale può essere calcolato con la formula:

I primi 20 numeri ettagonali sono:

1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, 1918, 2059, 2205, 2356, 2512, 2673, 2839, 3010, 3186, 3367, 3553, 3744, 3940, 4141, 4347, 4558, 4774, 4995, 5221, 5452, 5688 (successione A000566 dell'OEIS).

La parità dei numeri ettagonali segue il modello dispari-dispari-pari-pari. Come nel caso dei numeri quadrati, la radice digitale in base 10 di un numero ettagonale può essere solo 1, 4, 7 o 9.

Il quintuplo di un numero ettagonale aumentato di 1 è un numero triangolare.

La formula per la somma dei reciproci dei numeri ettagonali è data da

[1]

La funzione generatrice per i numeri ettagonali è

I numeri ettagonali soddisfano la seguente formula ricorsiva:

Numeri ettagonali generalizzati

Un numero ettagonale generalizzato è ottenuto dalla formula

dove è l'-esimo numero triangolare. I primi numeri ettagonali generalizzati sono:

1, 4, 7, 13, 18, 27, 34, 46, 55, 70, 81, 99, 112 (successione A085787 dell'OEIS).

Ogni altro numero ettagonale generalizzato è un regolare numero ettagonale. Esclusi 1 e 70, nessun altro numero ettagonale generalizzato è anche un numero di Pell.[2]

Note

  1. ^ Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers (PDF), su math.psu.edu. URL consultato il 30 dicembre 2010 (archiviato dall'url originale il 29 maggio 2013).
  2. ^ B. Srinivasa Rao, "Numeri ettagonali nella Sequenza di Pell e equazioni diofantee " Fib. Quart. 43 3: 194

Voci correlate

Collegamenti esterni

  Portale Matematica: accedi alle voci di Wikipedia che trattano di matematica

Read other articles:

History museum in Maryland, U.S.Harriet Tubman Underground Railroad Visitor CenterEstablishedMarch 10, 2017 (2017-03-10)Location4068 Golden Hill Road, Church Creek, Maryland, U.S.Coordinates38°26′37″N 76°08′41″W / 38.443695°N 76.144747°W / 38.443695; -76.144747TypeHistory museumDirectorDana Paterra, Maryland Park ServiceArchitectGWWO, Inc., ArchitectsOwnerNational Park Service and the State of MarylandWebsitewww.nps.gov/hatu/index.htm The Har...

 

Đối với một trò chơi điện tử nói về trận đánh này, xem Decisive Battles of WWII: Korsun Pocket. Chiến dịch hợp vây Korsun–ShevchenkovskyMột phần của Chiến dịch tấn công hữu ngạn Dniepr trong Chiến tranh thế giới thứ haiXe tăng hạng nhẹ Liên Xô trong chiến dịch Korsun-ShevchenkovskyThời gian24 tháng 1 – 17 tháng 2 năm 1944Địa điểmKhu vực Korsun thuộc tỉnh Uman, Ukraina, Liên Xô; nay là quận Korsun-Shevch...

 

Liga Nordeste de Rugby XV de 2013 Período: 2 de fevereiro30 de junho Participantes:  12 Final:  Teresina Estádio:  AABB Campeão:  Alecrim F.C. Rugby (4° título) Vice-campeão:  Associação Piauí Rugby ← 2012 2014 → A Liga Nordeste de Rugby XV de 2013 ou Nordestão 2013 é uma competição patrocinada pela Confederação Brasileira de Rugby (CBRu), envolvendo equipes da região Nordeste do Brasil. A competição tem formato distinto do ano anterior. Com doze...

Cevenole Montoulieu, a los pies de las Cévennes donde se encuentra el Mas des Carmes, de la Ganaderia CévenoleInformación de publicaciónCreador Gilbert Aymes y Lucien GirardTipo Ganadería bravaFundación 1968Sede central Montoulieu (Francia)Productos Toros de lidiaPropietario Gilbert Aymes y Lucien GirardEncaste Núñez[editar datos en Wikidata] La Ganadería Cévenole es una ganadería francesa de toros de lidia, creada en 1968. Su divisa es verde oscuro, negra y roja bri...

 

Escuela de Carabineros de Chile Activa 19 de diciembre de 1908País ChileRama/s Carabineros de ChileTipo Institución de Educación Superior de las Fuerzas de Orden y SeguridadFunción Formar Oficiales de Carabineros de ChileParte de Carabineros de ChileCultura e historiaHimno Himno de la Escuela de CarabinerosWeb Escuela de Carabineros[editar datos en Wikidata] La Escuela de Carabineros del General Carlos Ibáñez del Campo es una institución de Educación Superior, policial, de car

 

село Лиса Гора рос. Лысая Гораерз. Лысая Гора Країна  Росія Суб'єкт Російської Федерації Мордовія Муніципальний район Єльниківський район Поселення Новодівиченське Код ЗКАТУ: 89218840005 Код ЗКТМО: 89618440121 Основні дані Населення 6 осіб (2010[1]) Поштовий індекс 431385 Географі...

This article is part of a series onPolitics of Greece Constitution Constitutional history Human rights Executive Head of state President of the Republic (list): Katerina Sakellaropoulou Presidential Departments Government Prime Minister (list): Kyriakos Mitsotakis Cabinet: Kyr. Mitsotakis II Legislature Speaker: Konstantinos Tasoulas Presidium Conference of Presidents Parliamentary committees Constituencies Apportionment Judiciary Supreme courts Special Highest Court Court of Cassation Counci...

 

Government minister in New South Wales, Australia Not to be confused with Minister for Finance (New South Wales). Treasurer of New South WalesCoat of arms of New South WalesFlag of New South WalesIncumbentDaniel Mookheysince 28 March 2023 (2023-03-28)New South Wales TreasuryStyleThe HonourableMember ofParliamentCabinetExecutive CouncilReports toPremier of New South WalesSeat52 Martin Place, SydneyNominatorPremier of New South WalesAppointerGovernor of New South Waleson the...

 

Lokasi Kabupaten Yalimo di Provinsi Papua Pegunungan Berikut ini adalah daftar distrik dan kampung di Kabupaten Yalimo, Provinsi Papua Pegunungan.Kabupaten Yalimo terdiri atas 5 distrik dan 300 kampung dengan luas wilayah 4.330,29 km² dan jumlah penduduk 62.605 jiwa (2020). Kode Wilayah Kabupaten Yalimo adalah 95.06.[1][2][3] Kode Wilayah Nama Distrik Ibu kota Jumlah Kampung Daftar 95.06.01 Elelim Elelim 44 lbsDistrik Elelim, Kabupaten Yalimo, Papua PegununganKampung ...

هذه مقالة غير مراجعة. ينبغي أن يزال هذا القالب بعد أن يراجعها محرر مغاير للذي أنشأها؛ إذا لزم الأمر فيجب أن توسم المقالة بقوالب الصيانة المناسبة. يمكن أيضاً تقديم طلب لمراجعة المقالة في الصفحة المخصصة لذلك. (يوليو 2018) في علم الاجتماع وعلم الجريمة في وقت لاحق، كانت مدرسة شيكا...

 

Canadian TV series or program Seasons of LoveDVD CoverAlso known asLove on the LandBased onThe Earth Abideth by George DellWritten byJoe WiesenfeldDirected byDaniel PetrieStarringPeter StraussRachel WardRip TornTheme music composerPeter BreinerCountry of originCanadaOriginal languageEnglishProductionExecutive producersTrudy GrantPeter StraussProducerKevin SullivanCinematographyRon OrieuxEditorMairin WilkinsonRunning time240 minutesProduction companySullivan EntertainmentOriginal releaseN...

 

Bagian dari seriIslam Rukun Iman Keesaan Allah Nabi dan Rasul Allah Kitab-kitab Allah Malaikat Hari Kiamat Qada dan Qadar Rukun Islam Syahadat Salat Zakat Puasa Haji Sumber hukum Islam al-Qur'an Sunnah (Hadis, Sirah) Tafsir Akidah Fikih Syariat Sejarah Garis waktu Muhammad Ahlulbait Sahabat Nabi Khulafaur Rasyidin Khalifah Imamah Ilmu pengetahuan Islam abad pertengahan Penyebaran Islam Penerus Muhammad Budaya dan masyarakat Akademik Akhlak Anak-anak Dakwah Demografi Ekonomi Feminisme Filsafat...

Phrase popularized in literature and cinema Mexican bandit leader Gold Hat (portrayed by Alfonso Bedoya) tries to convince Fred C. Dobbs (Humphrey Bogart) that he and his men are Federales. Stinkin' badges is a paraphrase of a line of dialogue from the 1948 film The Treasure of the Sierra Madre.[1] That line was in turn derived from dialogue in the 1927 novel of the same name, which was the basis for the film. In 2005, the full quote from the film was chosen as #36 on the American Fil...

 

Submarine class of the United States Navy USS Benjamin Franklin Class overview NameBenjamin Franklin class Builders General Dynamics Electric Boat Newport News Shipbuilding Mare Island Naval Shipyard[2] Operators United States Navy Preceded byJames Madison class Succeeded byOhio class Built1963–1967[2] In commission1965–2002[1] Completed12 Retired12 General characteristics TypeNuclear-powered ballistic missile submarine DisplacementSurfaced: 7,325 lo...

 

This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. Please help improve it by replacing them with more appropriate citations to reliable, independent, third-party sources. (March 2015) (Learn how and when to remove this template message) All-Africa Korfball Championship (AAKC) is a korfball competition for African national teams organized by the International Korfball Federation. It has bee...

Manga series by Kazuo Umezu ReptiliaCover to Scared of Mamaへび女(Hebi Onna)GenreHorrorCreated byKazuo Umezu MangaWritten byKazuo UmezuPublished byKodansha, ShogakukanEnglish publisherNA: IDW PublishingMagazineShūkan Shōjo FriendDemographicShōjoOriginal runScared of MamaAugust 10, 1965 –September 7, 1965The Spotted GirlSeptember 14, 1965 –November 9, 1965Reptilia (Hebi Shōjo)March 15, 1966 – June 21, 1966 Adaptations The Snake Girl and the Silver-Haired Witch (film...

 

2022 film score by John Carpenter, Cody Carpenter and Daniel DaviesHalloween Ends (Original Motion Picture Soundtrack)Film score by John Carpenter, Cody Carpenter and Daniel DaviesReleasedOctober 13, 2022 (2022-10-13)Recorded2021–2022Genre Electronic film score Length42:29LabelSacred BonesHalloween soundtrack chronology Halloween Kills(2021) Halloween Ends(2022) John Carpenter, Cody Carpenter and Daniel Davies chronology Firestarter(2022) Halloween Ends(2022) Singles ...

 

Fereydunshahr County شهرستان فریدونشهر مقاطعة   الإحداثيات 32°55′N 50°00′E / 32.917°N 50.000°E / 32.917; 50.000 تقسيم إداري  الدولة  إيران  المحافظة أصفهان عاصمة فريدون شهر الناحية (Districts) الناحية المركزية عدد السكان (2011)  المجموع 38,334  عدد الأسر 10688 (2016)[1]  معلومات أخرى...

Rail line in Russia, Kazakhstan, and Uzbekistan Trans-Aral RailwayA view from the train while travelling along the path of the Trans-Aral Railway. Much of the railway cuts across the vast, rolling Kazakh SteppeOverviewOther name(s)Tashkent RailwayStatusOperationalOwnerRussian Railways (Rostov-on-Don–Iletsk I)Kazakhstan Temir Joly (Karatogay–Arys I)Uzbek Railways (Tashkent–Andizhan I)LocaleEuropean RussiaCentral AsiaTerminiRostov-on-DonAndizhan IStations42ServiceTypeInter-city railFreigh...

 

Thought experiment establishing quantum ideas Heisenberg's microscope is a thought experiment proposed by Werner Heisenberg that has served as the nucleus of some commonly held ideas about quantum mechanics. In particular, it provides an argument for the uncertainty principle on the basis of the principles of classical optics. The concept was criticized[clarification needed] by Heisenberg's mentor Niels Bohr, and theoretical and experimental developments have suggested that Heisenberg...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!