Il metile (o gruppo metilico) è il primo degli alchili ed è un gruppo funzionale costituito da un atomo di carbonio legato a tre atomi di idrogeno, avente formula –CH3, dove l'atomo di carbonio è tetraedrico, il C è ibridato sp3, come nel metano da cui il nome e la struttura derivano. Spesso nelle formule di struttura è scritto con il simbolo Me: MeOH sta a indicare l'alcool metilico CH3OH (metanolo). Nella nomenclatura sostitutiva una molecola in cui tale gruppo è presente assume il prefisso metil-, eventualmente preceduto dal numero dell'atomo di carbonio cui esso è legato: CH3-CH(CH3)-CH2-CH3 indica il 2-metilbutano.
Etimologia
Furono i chimici francesi dell'Ottocento Jean-Baptiste Dumas e Eugène-Melchior Péligot, dopo aver stabilito la struttura chimica del metanolo, ad introdurre, nel 1835, il termine "metilene" derivandolo dai termini del greco anticoμέθυ (méthy), vino,[2]o anche bevanda inebriante,[3] e ὕλη (hýle), selva, legna, materia del legno.[4] Questo per sottolineare il significato di alcool (proveniente) dal legno,[5] o spirito di legno[6] usato per il metanolo, in quanto alcool ricavabile da esso per distillazione.[7] Dal termine metilene in seguito si affermò, per retroformazione, la dizione attuale "metile" e quindi alcool metilico. Questo termine "metile" è presente in italiano dal 1931.[8]
Il suffisso -ile degli altri alchili (e di alchile e arile stessi, e di altri gruppi) vengono dallo stesso etimo hyle per estensione.[9]
Gruppo funzionale
È l'alchile più semplice e si differenzia da tutti gli altri (primari, secondari, terziari) per non avere alcun atomo di carbonio unito a quello principale. Per tale motivo è anche l'alchile avente il minimo ingombro sterico, il suo raggio di van der Waals è riportato essere 200 pm (2,00 Å),[10] mentre quello dell'atomo di idrogeno è 120 pm (1,20 Å).[11] Nei riguardi della sua reattività in molecole organiche il metile è in grado di stabilizzare un carbocatione adiacente sia per effetto induttivo +I,[12] che per effetto iperconiugativo;[13] sempre per effetto iperconiugativo stabilizza un legame π vicino in alcheni, alchini e idrocarburi aromatici;[13] stabilizza in certa misura anche un radicale adiacente.[14]
Specie chimiche
Come specie chimica a sé stante il metile può presentarsi come specie neutra nel radicale libero CH3•, il radicale metile; come specie carica positivamente, nel catione metilico CH3+; come specie carica negativamente, nell'anione metilico CH3–; queste specie tutte sono molto reattive.
Radicale metile
Il radicale metile generato in fase condensata o anche in fase gassosa è una specie a vita estremamente breve, soggetta a dimerizzare ad etano (CH3-CH3), estrazione di idrogeno (H•) da altre molecole, a dare metano, o estrazione di altri atomi (es. Cl•) per dare clorometano e generare altri radicali liberi; oppure unirsi ad altri radicali presenti a dare molecole stabili. Per la sua formazione dall'etano, per omolisi di H3C–CH3, occorrono 356 kJ/mole; dal metano, per omolisi di H–CH3, 439 kJ/mol.[15][16] È ancora in fase di studio la struttura del radicale libero CH3•, che sembra essere planare,[17] o ameno approssimativamente tale.
Catione metile
Il corrispondente catione CH3+ (il più semplice carbocatione) ha una struttura planare in cui l'atomo di carbonio ha ibridazionesp2 e si trova al centro di un triangolo equilatero i cui vertici sono occupati dai 3 atomi di idrogeno (simmetria D3h). L'energia di ionizzazione di CH3• ammonta a 9,84 eV, molto meno di H• (13,60 eV), ma maggiore di quella della gran parte dei metalli.[18] La specie che somiglia più da vicino ad un catione metile in fase condensata è probabilmente lo ione metildiazonio CH3–N+≡N (ottenuto ad es. per protonazione del diazometano) nel quale il legame tra C e N è stato descritto come una interazione piuttosto debole, con una carica stimata su C di +0,840 e, facilmente soggetta a rompersi eteroliticamente in CH3+ e una molecolaN2.[19]
In fase gassosa il metano protonato, ossia lo ione metanio, che è facilmente ottenibile per ionizzazione chimica, può decomporsi nel catione metile e una molecola di idrogeno:
Un altro metodo per formare il catione metile in fase gassosa, o anche in fase condensata, privo di controioni, è connesso al decadimento beta del trizio. Si prepara il metano monotriziato per reazione del metillitio con acqua triziata: CH3Li + HOT → LiOH + CH3T ↑; si raccoglie il metano triziato e in esso in un certo lasso di tempo avvengono decadimenti del trizio legato al metile per dare un cationeelio con espulsione di un elettrone (e un antineutrino):
Il corrispondente anione, CH3–, ha struttura piramidale (C sp3), quindi a simmetria C3v, ma è soggetto ad inversione ad ombrello, come la molecola di ammoniaca, con la quale esso è precisamente isoelettronico; la barriera di inversione è stata valutata in 0,492 kJ/mol (2,06 kcal/mol). L'inversione di CH3– è di gran lunga più facile che in NH3, in cui la barriera è circa 50 volte maggiore (24,7 kJ/mol).[23] L'affinità elettronica del radicale CH3• ammonta a solo 0,080 eV, un ordine di grandezza minore di quella di H• (0,75 eV),[24][25] e la sua elettronegatività di gruppo è stata valutata essere χ ≈ 2,3 in scala Pauling, leggermente maggiore di quella di H (2,2).[26] L'anione metilico, ottenibile in fase gassosa, è ivi una delle basi più forti che si conoscano, eccettuati gli anioni dinegativi come O2–: la sua affinità protonica è 1712 kJ/mol,[24] ben maggiore di quella dello ione idruro (1675 kJ/mol), che è già una base molto forte.[25] Le specie chimiche che in fase condensata somigliano all'anione metilico sono ad esempio i metiluri di metalli molto attivi, principalmente di metalli alcalini, come ad esempio CH3–Li (metillitio, in terminologia organica). In questo la carica stimata su C ammonta a -0,506 e.[19]
Biochimica
In biochimica, i gruppi metilici rappresentano dei radicali deputati alla trasmissione di alcuni tra i segnali intracellulari più delicati.
La S-adenosil-metionina (SAM), un metabolita intermedio derivato dalla metionina e dall'ATP, tramite enzimi specifici può cedere il suo gruppo metilico sia a proteine che ad acidi nucleici, soprattutto il DNA.
La metilazione del DNA e degli istoni, rappresenta infatti un evento biochimico legato sia alla proliferazione che al differenziamento cellulare.
Tramite le protein-metiltrasferasi (PRMTs), la metilazione dei substrati proteici ne garantisce delle funzioni catalitiche o di stabilità particolari; oppure la migrazione di proteine verso compartimenti cellulari specifici.
Nel caso del DNA, gli enzimi DNA-C-metiltrasferasi (DNMTs), cedono il radicale metile dalla SAM ad un residuo di citosina sul carbonio 5 dell'anello.
La metilazione avviene in corrispondenza di zone del DNA ricche di citosine affiancate da guanine (isole CG). Una volta metilate, queste isole diventano bersaglio di proteine "cappio" sensibili alla presenza di metil-citosine, le quali impediscono stabilmente che il DNA di quella regione genica venga trascritto.
La metilazione di quel punto ha portato alla repressione trascrizionale di quel gene o gruppo di geni. Nel caso di cellule rinnovabili, la reazione non è facilmente reversibile e conduce la cellula a scegliere un programma genetico che da immatura (blasto) la porterà ad un fenotipo orientato (cellula muscolare, epatica, neuronale, ecc.).
La reazione è invece favorita nel caso delle cellule tumorali dove la malignità, e l'acquisizione di proprietà biochimiche che la cellula non possedeva prima, sono da imputare ad una maggiore eliminazione delle proteine "cappio", o all'inattivazione delle DNMTs.
Terapie
In terapia esistono alcuni farmaci che inibiscono le DNMTs ed inducono le cellule sia normali che tumorali a differenziarsi.
La 5-azacitidina, derivato azotato della citosina, mima il substrato citosinico nella molecola del DNA ed inganna l'enzima che così non metila bene il DNA. La cellula viene così forzata a scegliere un programma genetico terminale.
La 5-azacitidina ha trovato e tuttora trova impiego nella terapia delle mielodisplasie, dove il rischio delle cellule midollari di convertirsi in blasti leucemici è molto alto.
In laboratorio è il farmaco preferito per trattare le colture di cellule animali ed umane in modo da studiare i meccanismi intimi, ed ancora molto oscuri, del differenziamento cellulare.
^J. Dumas and E. Péligot (1835) "Mémoire sur l'espirit de bois et sur les divers composés ethérés qui en proviennent" (Memoir on spirit of wood and on the various ethereal compounds that derive therefrom), Annales de chimie et de physique, 58 : 5-74; " Nous donnerons le nom de méthylène (1) à un radical … (1) μεθυ, vin, et υλη, bois; c'est-à-dire vin ou liqueur spiritueuse du bois." (Noi daremo il nome "methylene" (1) a un radicale … (1) mety, vino, e hyle, legno; cioè, vino o spirito di legno.)
^ Streitwieser A. e Bergman R. G., Table of Bond Dissociation Energies (PDF), su ia601408.us.archive.org, University of California, Berkeley, 19 settembre 2018. URL consultato il 13 marzo 2019.