הגובה של משולש שווה-צלעות בעל אורכי צלעות 2 הוא . בנוסף, אורך הניצב הארוך במשולש זהב (משולש בעל זוויות 30, 60 ו-90) שאורך היתר שלו הוא 2 הוא .
יתר על כן, הגובה במשושה משוכלל שאורכי צלעותיו הוא 1 הוא .
ניתן למצוא את השורש הריבועי של 3 כאורך הצלעות של משולש שווה-צלעות החוסם מעגל בקוטר 1.
אם משולש שווה-צלעות בעל צלעות באורך 1 נחתך לשני חצאים שווים, על ידי חציית זווית פנימית כדי ליצור זווית ישרה עם הצלע שמולה, היתר של המשולש ישר-הזווית הוא באורך 1 ואורכן של הצלעות הוא ו-. מכאן, טנגנס של 60° שווה ל-, והסינוס של 60° והקוסינוס של 30° שווים ל-.
השורש הריבועי של 3 מופיע גם בביטויים אלגבריים עבור קבועים טריגונומטריים אחרים, כולל[3] הסינוסים של 3°, 12°, 15°, 21°, 24°, 33°, 39°, 48°, 51°, 57°, 66°, 69°, 75°, 78°, 84° ו-87°.
הוא המרחק בין צלעות מקבילות של משושה משוכלל בעל צלעות באורך 1.
לווסיקה פיסקיס יש יחס בין הציר העיקרי לציר הקטן השווה ל-:1. ניתן להראות זאת על ידי בניית שני משולשים שווי-צלעות בתוכו.
שימושים אחרים
הנדסת הספק
בהנדסת הספק, המתח בין שתי פאזות במערכת תלת-פאזית הוא פי מהמתח לקו הנייטרלי. הסיבה לכך היא שכל שתי פאזות נמצאות במרחק של 120° זה מזה, ושתי נקודות במעגל המרוחקות 120 מעלות זו מזו מופרדות במרחק שגדול פי מהרדיוס.
S., D.; Jones, M. F. (1968). "22900D approximations to the square roots of the primes less than 100". Mathematics of Computation. 22 (101): 234–235. doi:10.2307/2004806. JSTOR2004806.